Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schiele, M.

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020In-situ monitoring of hybrid friction diffusion bonded EN AW 1050/EN CW 004A lap joints using artificial neural nets5citations

Places of action

Chart of shared publication
Augsburg, K.
1 / 1 shared
Bergmann, Jp
1 / 1 shared
Glaser, Marcus
1 / 5 shared
Köhler, Tobias
1 / 5 shared
Schricker, Klaus
1 / 16 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Augsburg, K.
  • Bergmann, Jp
  • Glaser, Marcus
  • Köhler, Tobias
  • Schricker, Klaus
OrganizationsLocationPeople

article

In-situ monitoring of hybrid friction diffusion bonded EN AW 1050/EN CW 004A lap joints using artificial neural nets

  • Augsburg, K.
  • Schiele, M.
  • Bergmann, Jp
  • Glaser, Marcus
  • Köhler, Tobias
  • Schricker, Klaus
Abstract

<jats:p>In this work, a dissimilar copper/aluminum lap joint was generated by force-controlled hybrid friction diffusion bonding setup (HFDB). During the welding process, the appearing torque, the welding force as well as the plunge depth are recorded over time. Due to the force-controlled process, tool wear and the use of different materials, the resulting data series varies significantly, which makes quality assurance according to classical methods very difficult. Therefore, a Convolutional Neural Network was developed which allows the evaluation of the recorded process data. In this study, data from sound welds as well as data from samples with weld defects were considered. In addition to the different welding qualities, deviations from the ideal conditions due to tool wear and the use of different alloys were also considered. The validity of the developed approach is determined by cross validation during the training process and different amounts of training data. With an accuracy of 88.5%, the approach of using Convolutional Neural Network has proven to be a suitable tool for monitoring the processes.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • copper
  • defect