People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Machado, Jjm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023A butt shear joint (BSJ) specimen for high throughput testing of adhesive bondscitations
- 2021Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded jointscitations
- 2020Displacement rate effect in the fracture toughness of glass fiber reinforced polyurethanecitations
- 2020Geometrical optimization of adhesive joints under tensile impact loads using cohesive zone modellingcitations
- 2020Numerical study of mode I fracture toughness of carbon-fibre-reinforced plastic under an impact loadcitations
- 2020Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditionscitations
- 2020Experimental and numerical study of the dynamic response of an adhesively bonded automotive structurecitations
- 2019Fatigue performance of single lap joints with CFRP and aluminium substrates prior and after hygrothermal agingcitations
- 2019Adhesive joint analysis under tensile impact loads by cohesive zone modellingcitations
- 2019Dynamic behaviour in mode I fracture toughness of CFRP as a function of temperaturecitations
- 2019A strategy to reduce delamination of adhesive joints with composite substratescitations
- 2018Improvement in impact strength of composite joints for the automotive industrycitations
- 2018Adhesives and adhesive joints under impact loadings: An overviewcitations
- 2018Mechanical behaviour of adhesively bonded composite single lap joints under quasi-static and impact conditions with variation of temperature and overlapcitations
- 2018Numerical study of the behaviour of composite mixed adhesive joints under impact strength for the automotive industrycitations
- 2018Adhesive thickness influence on the shear fracture toughness measurements of adhesive jointscitations
- 2017Mode II fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Mode I fracture toughness of CFRP as a function of temperature and strain ratecitations
- 2017Dynamic behaviour of composite adhesive joints for the automotive industrycitations
Places of action
Organizations | Location | People |
---|
article
Numerical study of mode I fracture toughness of carbon-fibre-reinforced plastic under an impact load
Abstract
The main objective of this work is, by using cohesive zone modelling, to compute the fracture toughness behaviour in mode I of unidirectional carbon-fibre-reinforced plastic subjected to an impact load at 4.7 m/s. To perform this task, double-cantilever beam specimens were simulated, with its opening displacement and crack propagation being assessed, as well as the evolution of strain rate through the test. Therefore, by plotting the crack propagation, it was possible to calculate the fracture toughness in mode I (G(IC)). A comparison of the numerical results with experimental tests previously performed by using a drop weight falling-wedge impact test equipment was made, allowing to infer that the numerical approach, based on a triangular cohesive zone modelling, is capable to predict the behaviour of such specimens under impact, accurately obtain G(IC), and to determine the value of strain rate achieved through the test.