People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alves, Jl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Artificial reefs through additive manufacturing: a review of their design, purposes and fabrication process for marine restoration and managementcitations
- 2023Potential Use of Sugarcane Bagasse Ash in Cementitious Mortars for 3D Printingcitations
- 2023Analysis of Lattices Based on TPMS for Bone Scaffold
- 20224D structures for the short-time building of emergency shelterscitations
- 2022Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unitcitations
- 2022A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materialscitations
- 2021Development of 3D printing sustainable mortars based on a bibliometric analysiscitations
- 2021The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturingcitations
- 2021Effect of 3D printer enabled surface morphology and composition on coral growth in artificial reefscitations
- 2021Using a radial point interpolation meshless method and the finite element method for application of a bio-inspired remodelling algorithm in the design of optimized bone scaffoldcitations
- 2020Influence of multiple scan fields on the processing of 316L stainless steel using laser powder bed fusioncitations
- 2020Machinability of PA12 and short fibre-reinforced PA12 materials produced by fused filament fabricationcitations
- 2019Study of the influence of sintering temperature on water absorption in the manufacture of porcelain cupscitations
- 2017Effect of the chemical milling process on the surface of titanium aluminide castings
- 2017Study of the viability of manufacturing ceramic moulds by additive manufacturing for rapid castingcitations
- 2017Experimental characterization of ceramic shells for investment casting of reactive alloyscitations
- 2017Reinforcement of a biopolymer matrix by lignocellulosic agro-wastecitations
- 2017The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment castingcitations
- 2015DEVELOPMENT OF A PROJECT AND MANUFACTURE METHODOLOGY FOR TITANIUM ALLOYS JOINT PROSTHESES
Places of action
Organizations | Location | People |
---|
article
The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment casting
Abstract
Ti6Al4V alloy belongs to the most significant alloys within the conventional titanium alloys, namely for producing turbochargers impellers and human prostheses. TiAl alloys, because of its attractive properties, such as half density of any nickel-based alloys and excellent high temperature properties, exhibit excellent potential for aerospace turbines and turbocharger turbines application. Investment casting is a near net shape process with great interest for these kind of complex parts, but the processing of these alloys using this technique is still a challenge. In spite of these advantages, these alloys are highly reactive in their molten state, reacting with the ceramic shells used in investment casting, forming a hardened and brittle layer called alpha case on the cast alloy surface, rich in interstitial elements such as oxygen. It is commonly accepted that yttria-based face coats are the best solution for minimizing metal mold reaction, but this ceramic oxide is very expensive. So, the aim of this work is to test alternative materials to produce ceramic shells face coats. A test sample simulating both compressor wheels and turbines was developed and assembled in a wax tree for alpha case and fluidity evaluation. Reactivity studies were conducted based on microhardness measurements and microstructural analysis of gamma-TiAl and Ti6Al4V standard test samples, casted in shells with different face coat materials: fused Y2O3, ZrSiO4, Al2O3, yttria (6%) stabilized ZrO2 and yttria stabilized ZrO2 with 10% fine Y2O3 (3-7 mu m). The results obtained showed that fused Y2O3 face coat eliminates the alpha case, although affecting the fluidity, and gamma-TiAl castings have more misruns blades than Ti6Al4V castings.