Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chernets, Yuriy

  • Google
  • 3
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Investigation of Wear Resistance of Polyamide PA6 Based Composite Materials for Metal - Polymer Plain Bearings and Gears1citations
  • 2022Investigations on Contact Pressures and Durability of Metal-Polymer Dry Sliding Bearings with Miniature, Small and Large Diameters3citations
  • 2021Modelling of contact and tribotechnical parameters of metal–polymer gears taking into account wear and correction of teeth1citations

Places of action

Chart of shared publication
Skvarok, Yuriy
1 / 1 shared
Zubrzycki, Jaroslaw
1 / 3 shared
Chernets, Myron
2 / 4 shared
Kornienko, Anatolii
2 / 4 shared
Fedorchuk, Svetlana
1 / 2 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Skvarok, Yuriy
  • Zubrzycki, Jaroslaw
  • Chernets, Myron
  • Kornienko, Anatolii
  • Fedorchuk, Svetlana
OrganizationsLocationPeople

article

Modelling of contact and tribotechnical parameters of metal–polymer gears taking into account wear and correction of teeth

  • Kornienko, Anatolii
  • Fedorchuk, Svetlana
  • Chernets, Yuriy
Abstract

<jats:p> The estimation and the analysis of the arising contact pressures and tribotechnical parameters, that is, wear and durability, of metal-polymer spur gears using the author's computational method are presented in this study. Gears with a steel gear and pinion made of polyamide PA6 modified with dispersed carbon fibers (CF) or glass fibers (GF) whose content was 30%, PA6 + 30CF and PA6 + 30GF correspondingly, are studied. This took into account the parity of engagement, the effect of composite pinion teeth wear and gear correction. Quantitative and qualitative regularities of change of the specified parameters depending on composite type and gear correction type are established. It is found that the teeth wear of composite toothed wheels has a significant effect on reducing the values of the initial maximum contact pressures in the engagement. The distribution of linear wear along the teeth working profile and the localization of its maximum values, depending on the correction of engagement, are determined. The minimum durability of metal–polymer gears is calculated by simplified and improved methods. The optimal values of the correction coefficients at which the minimum durability is highest for both combination types of metal–polymer gears with height and angular teeth correction are established. The durability of metal–polymer gears with a driving pinion made of PA6 + 30CF composite calculated with the improved method is about seven times higher than the pinion made of PA6 + 30GF composite. In contrast to the methods of calculation of metal gears known from publications, the method presented in this study takes into account such practically significant factors as change of radii of tooth profile curvature owing to wear, their correction and number of teeth pairs at the engagement. In metal–polymer gears, there are no analytical calculation methods for modelling wear and tribological durability compared with that of the author's method. </jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass
  • steel
  • composite
  • durability