People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parau, Anca Constantina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titaniumcitations
- 2023In Vitro Evaluation of Ag- and Sr-Doped Hydroxyapatite Coatings for Medical Applicationscitations
- 2023Bioglass and Vitamin D3 Coatings for Titanium Implants: Osseointegration and Corrosion Protectioncitations
- 2023TiSiCN as Coatings Resistant to Corrosion and Neutron Activationcitations
- 2022Deposition temperature effect on sputtered hydroxyapatite coatings prepared on AZ31B alloy substratecitations
- 2022Development and Evaluation of Copper Based Transparent Heat Reflectors Obtained by Magnetron Sputteringcitations
- 2022Synthesis and Investigation of Antibacterial Activity of Thin Films Based on TiO2-Ag and SiO2-Ag with Potential Applications in Medical Environmentcitations
- 2022Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatitecitations
- 2021Thin Films Deposition of Ta2O5 and ZnO by E-Gun Technology on Co-Cr Alloy Manufactured by Direct Metal Laser Sinteringcitations
- 2020Spin Coating Immobilisation of C-N-TiO2 Co-Doped Nano Catalyst on Glass and Application for Photocatalysis or as Electron Transporting Layer for Perovskite Solar Cellscitations
- 2020A Strategy for Alleviating Micro Arcing during HiPIMS Deposition of DLC Coatingscitations
- 2020A Strategy for Alleviating Micro Arcing during HiPIMS Deposition of DLC Coatingscitations
- 2019Corrosion and tribological behaviour in a 3.5% NaCl solution of vacuum arc deposited ZrCN and Zr–Cr–Si–C–N coatingscitations
- 2013Influence of Thermal Treatment on the Roughness, Corrosion Resistance and Wettability of Hydroxyapatite Films Deposited by RF Magnetron Sputteringcitations
Places of action
Organizations | Location | People |
---|
article
Corrosion and tribological behaviour in a 3.5% NaCl solution of vacuum arc deposited ZrCN and Zr–Cr–Si–C–N coatings
Abstract
<jats:p> ZrCN and Zr–Cr–Si–C–N coatings were deposited on Si (100) and 316L stainless steel substrates using the cathodic vacuum arc technique in a mixed atmosphere of C<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub> and N<jats:sub>2</jats:sub>. The coatings were grown keeping almost constant the ratio of the C<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub> and N<jats:sub>2</jats:sub> mass flow rates, substrate bias and deposition temperature at ∼0.81, −200 V and 320 ℃, respectively. The investigation carried out aimed to determine the corrosion and tribological performance of the novel Zr–Cr–Si–C–N coating obtained by Cr and Si addition to the ZrCN reference coating. The films were characterized in terms of elemental and phase composition, crystalline structure, hardness, reduced elastic modulus and adhesion. Particular attention was devoted to the investigation of coatings' corrosion resistance and tribological performance carried out in a 3.5% NaCl solution. Cr and Si addition to ZrCN coating leads to reduction in film crystallinity, finer microstructure, enhanced corrosion resistance and better tribological performance under corrosive testing conditions. In this paper, we discuss the measured mechanical and tribological properties of the two coatings in terms of various ratios of hardness and reduced elastic modulus. The coated samples exhibited high corrosion protection efficiency, reaching 97.8% for the Zr–Cr–Si–C–N coating. Both coatings improved the tribological performance of 316L steel in the saline solution. Specifically, the addition of Cr and Si into ZrCN coating results in a decrease of the wear rate of about 60%. </jats:p>