Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perricone, G.

  • Google
  • 3
  • 9
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Hot deformation behavior of Al-20Si-5Fe-2Ni alloy obtained by spray formingcitations
  • 2019Simulation of contact area and pressure dependence of initial surface roughness for cermet-coated discs used in disc brakes11citations
  • 2018Scaling effects of measuring disc brake airborne particulate matter emissions – A comparison of a pin-on-disc tribometer and an inertia dynamometer bench under dragging conditions20citations

Places of action

Chart of shared publication
Menapace, L.
1 / 1 shared
Menapace, C.
1 / 5 shared
Wahlström, Jens
2 / 24 shared
Riva, Gabriele
1 / 2 shared
Alemani, M.
1 / 1 shared
Metinöz, I.
1 / 1 shared
Matějka, V.
1 / 3 shared
Söderberg, A.
1 / 2 shared
Olofsson, U.
1 / 6 shared
Chart of publication period
2021
2019
2018

Co-Authors (by relevance)

  • Menapace, L.
  • Menapace, C.
  • Wahlström, Jens
  • Riva, Gabriele
  • Alemani, M.
  • Metinöz, I.
  • Matějka, V.
  • Söderberg, A.
  • Olofsson, U.
OrganizationsLocationPeople

article

Scaling effects of measuring disc brake airborne particulate matter emissions – A comparison of a pin-on-disc tribometer and an inertia dynamometer bench under dragging conditions

  • Alemani, M.
  • Wahlström, Jens
  • Metinöz, I.
  • Perricone, G.
  • Matějka, V.
  • Söderberg, A.
  • Olofsson, U.
Abstract

<p>An important contributor to non-exhaust emissions in urban areas is airborne particulate matter originating from brake systems. A well-established way to test such systems in industry is to use inertia dynamometer benches; although they are quite expensive to run. Pin-on-disc tribometers, on the other hand, are relatively cheap to run, but simplify the real system. The literature indicates promising correlations between these two test stands with regard to measured airborne number distribution. Recent studies also show a strong dependency between the airborne number concentration and the disc temperature. However, a direct comparison that also takes into account temperature effects is missing. The aim of this paper is, therefore, to investigate how the transition temperature is affected by the different test scales, under dragging conditions, and the effects on total concentration and size distribution. New and used low-steel pins/pads were tested against cast iron discs/rotors on both the aforementioned test stands, appositely designed for particulate emission studies. A constant normal load and constant rotational velocity were imposed in both test stands. Results show that a transition temperature can always be identified. However, it is influenced by the test scale and the frictional pair status. Nevertheless, emissions are assessed similarly when an equivalent frictional pair status is analysed (e.g. run-in). Further investigations for fully run-in samples on the pin-on-disc should be performed in order to finally assess the possibility of using the tribometers for the initial assessment of different friction materials.</p>

Topics
  • impedance spectroscopy
  • steel
  • iron
  • cast iron