People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farshidi, Arash
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Face/core disbond fatigue growth in honeycomb cored aircraft sandwich elements under mixed mode flatwise tension loadingcitations
- 2020Low temperature mixed-mode debond fracture and fatigue characterisation of foam core sandwichcitations
- 2019Numerical fracture analysis and model validation for disbonded honeycomb core sandwich compositescitations
- 2019Disbond Damage in Aircraft Sandwich Structures
- 2017Debond fracture characterization in sandwich composites under arctic low temperature conditions
Places of action
Organizations | Location | People |
---|
article
Face/core disbond fatigue growth in honeycomb cored aircraft sandwich elements under mixed mode flatwise tension loading
Abstract
Disbond damage growth in honeycomb cored sandwich structures due to static and fatigue mixed mode loading is investigated numerically and experimentally. A two dimensional finite element model was generated using core homogenization and the Crack Surface Displacement Extrapolation mode separation method, integrated into a fracture mechanics based analysis sub-routine to predict face/core interface fatigue crack propagation. The Cycle Jump technique was furthermore applied to accelerate fatigue analysis. Mixed mode fatigue characterization testing was conducted using Double Cantilever Beam specimens loaded with Uneven Bending Moments, generating a relationship between crack propagation rates and energy release rate amplitudes as a modified Paris Law, measured at three mode-mixity phase angles. The measured Paris laws were subsequently used as input data for the numerical fatigue model. The numerical model was validated against CFRP/Nomex® Sandwich Tearing Test specimen tests with a propagating face/core interface crack yielding varying mode-mixities. The results from the validation showed good agreement between numerical predictions and experimental measurements.