People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Razmkhah, Omid
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Energy absorption and collapse behavior of PP-based pin-reinforced composite sandwich panels under quasi-static flatwise compression loading
- 2023Energy absorption and collapse behavior of PP ‐based pin‐reinforced composite sandwich panels under quasi‐static flatwise compression loadingcitations
- 2022Effect of layering layout on the energy absorbance of bamboo-inspired tubular compositescitations
- 2019Impact response of Kevlar/rubber compositecitations
- 2019Experimental investigation on the quasi-static mechanical behavior of autoclaved aerated concrete insulated sandwich panelscitations
- 2018Static analysis of highly anisotropic laminated beam using unified zig-zag theory subjected to mechanical and thermal loadingcitations
- 2017Experimental investigation of amount of nano-Al2O3 on mechanical properties of Al-based nano-composites fabricated by powder metallurgy (PM)citations
Places of action
Organizations | Location | People |
---|
article
Experimental investigation on the quasi-static mechanical behavior of autoclaved aerated concrete insulated sandwich panels
Abstract
This research work aims to experimentally study the quasi-static mechanical behavior of a new proposed sandwich insulated panel consisting of autoclaved aerated concrete as the core material and composite laminate as the face reinforcement. Composite insulated sandwich panels were fabricated using woven E/glass fiber plies and metal sheet as face skins stacked to the core. Quasi-static flexural three-point bending and indentation tests were carried out to investigate the mechanical responses of the manufactured sandwich panels. Stress distribution and crack growth of the reinforced beam elements in flexural tests were captured and tracked through a digital image correlation method. The effects of several parameters such as the indenter’s diameter, nose shape geometry and face sheet stacking sequence on the energy absorption behavior of specimens with different boundary conditions based on visual observation of captured microscopic images were explored and compared. Test results indicated that both indenter diameter and boundary conditions affect response and damage mechanisms significantly whereas indenter nose shape has a slight effect on energy absorption. The results illustrate the benefit of incorporation of fiber metal laminate face sheets as a simple and cost-effective in situ technique to strengthening the existing lightweight cementitious materials used in the construction of non-structural components.