People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miniaci, Marco
University of Bologna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 20223D tensegrity braces with superelastic response for seismic controlcitations
- 2020Tunable frequency band structure in photo-responsive elastic metamaterials
- 2018Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural designcitations
- 2018Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterialscitations
Places of action
Organizations | Location | People |
---|
article
Relaxed micromorphic modeling of the interface between a homogeneous solid and a band-gap metamaterial: New perspectives towards metastructural design
Abstract
International audience ; In the present paper, the material parameters of the isotropic relaxed micromorphic model derived for a specific metamaterial in a previous contribution are used to model its transmission properties. Specifically, the reflection and transmission coefficients at an interface between a homogeneous solid and the chosen metamaterial are analyzed by using both the relaxed micromorphic model and a direct FEM implementation of the detailed microstructure. The obtained results show an excellent agreement between the transmission spectra derived via our enriched continuum model and those issued by the direct FEM simulation. Such excellent agreement validates the indirect measure of the material parameters and opens the way towards an efficient meta-structural design.