Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Rooyen, Melody

  • Google
  • 5
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Creep damage parameter extraction from ex-service 12% Cr steel using digital image correlation computed strain data1citations
  • 2022A numerical approach for designing functionally stiff triply-periodic-minimal-surface structurescitations
  • 2022Creep deformation measurement of ex‐service 12% Cr steel over nonuniform stress fields using digital image correlation3citations
  • 2021An Experimental Approach to the Application of Digital Image Correlation to Small Punch Creep Testing1citations
  • 2020Measurement of creep deformation of ex-service 12% Cr steel using digital image correlation3citations

Places of action

Chart of shared publication
Becker, Thorsten Hermann
4 / 4 shared
Blackwell, Matthew Austin
1 / 1 shared
Forsey, Alexander
1 / 7 shared
Gungor, Salih
1 / 7 shared
Mostafavi, Mahmoud
1 / 58 shared
Becker, Thorsten
1 / 1 shared
Westraadt, Johan Ewald
1 / 2 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Becker, Thorsten Hermann
  • Blackwell, Matthew Austin
  • Forsey, Alexander
  • Gungor, Salih
  • Mostafavi, Mahmoud
  • Becker, Thorsten
  • Westraadt, Johan Ewald
OrganizationsLocationPeople

article

Creep damage parameter extraction from ex-service 12% Cr steel using digital image correlation computed strain data

  • Becker, Thorsten Hermann
  • Van Rooyen, Melody
Abstract

<jats:p> Several continuum damage mechanics (CDM) modelling approaches for predicting creep deformation of tempered ferritic steels have been developed in the literature, which have evolved from efforts to extend the operability of power plant components. Few of these models, however, focus on damage assessment of ex-service states of power plant steels through the extraction of damage parameters. Furthermore, few CDM approaches leverage the high density of creep curve data available through full-field strain measurement techniques such as digital image correlation (DIC). This work uses multiple creep curves obtained from DIC computed strain data at several stresses and temperatures from individual specimens of X20CrMoV12-1 (X20) piping steel. These curves serve as input data to a modified Oruganti continuum damage mechanics (CDM) model whereby microstructural-specific damage parameters can be extracted. Good agreement is noted between CDM-extracted parameters and microstructural, creep cavity density and hardness damage indicators. Damage parameters based on subgrain growth are particularly sensitive to the ex-service state of the X20 steel. The proposed CDM approach using DIC computed creep curves is shown to be a material efficient alternative to traditional damage assessment methods of ex-service material. </jats:p>

Topics
  • density
  • impedance spectroscopy
  • extraction
  • steel
  • hardness
  • creep