People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ostachowicz, Wiesław
Polish Academy of Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Deep learning for automatic assessment of breathing-debonds in stiffened composite panels using non-linear guided wave signalscitations
- 2022Shear Strain Singularity-Inspired Identification of Initial Delamination in CFRP Laminates: Multiscale Modulation Filter for Extraction of Damage Features
- 2022Electromechanical impedance based debond localisation in a composite sandwich structurecitations
- 2021Extended Non-destructive Testing for the Bondline Quality Assessment of Aircraft Composite Structurescitations
- 2021Adhesive Bonding of Aircraft Composite Structures
- 2020Nonlinear elastic wave propagation and breathing-debond identification in a smart composite structurecitations
- 2019Nondestructive analysis of core-junction and joint-debond effects in advanced composite structurecitations
- 2019Ultrasonic Lamb wave-based debonding monitoring of advanced honeycomb sandwich composite structurescitations
- 2019Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditionscitations
- 2019Ultrasonic guided wave propagation in a repaired stiffened composite panelcitations
- 2019Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structurecitations
- 2018Damage-induced acoustic emission source identification in an advanced sandwich composite structurecitations
- 2018Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structurecitations
- 2015Embedded Damage Localization Subsystem Based on Elastic Wave Propagationcitations
- 2014Calibration Problem of AD5933 Device for Electromechanical Impedance Measurements
- 2014Damage Detection in Composites by Noncontact Laser Ultrasonic
- 2013Embedded Signal Processing Subsystem for SHM
Places of action
Organizations | Location | People |
---|
article
Electromechanical impedance based debond localisation in a composite sandwich structure
Abstract
<p>An electromechanical impedance (EMI) based structural health monitoring (SHM) approach is proposed for the localisation of skin-core debonds in composite sandwich structure (CSS). Towards this, laboratory experiments and numerical simulations of EMI in a CSS with core to bottom face-sheet debond have been carried out using a network of piezoelectric transducers (PZTs). The frequency-domain analysis of the registered EMI signals shows that the presence of inter-facial debonds in the CSS significantly influences the conductance magnitudes of the registered EMI data. It was also noticed that the conductance magnitudes of the signals are dependent on the debond-to-PZT distances. In all the study cases, an agreement between the simulation and experimental results is observed. Eventually, a simulated SHM approach is proposed that uses a debond detection algorithm to calculate the changes in conductance magnitudes to effectively locate such debonds in CSS. The study is further extended for the detection of debonds at different locations in the CSS, including a debond located at the edge to assess the potential of the proposed SHM approach.</p>