People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barati, Mahmoud
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO3 ceramicscitations
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO 3 ceramicscitations
- 2023Low cycle fatigue lifetime prediction of superplastic shape memory alloy structures ; Low cycle fatigue lifetime prediction of superplastic shape memory alloy structures: Application to endodontic instrumentscitations
- 2023Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effectscitations
- 2023Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effectscitations
- 2022Stress raisers and fracture in shape memory alloys: review and ongoing challengescitations
- 2020Self-heating of metastable 304L austenitic stainless steel under cyclic loading: Influence of initial martensite volume fraction, testing temperature and pre-straincitations
- 2020Self-heating of metastable 304L austenitic stainless steel under cyclic loading: Influence of initial martensite volume fraction, testing temperature and pre-straincitations
- 2019Modeling of torsion fatigue in shape memory alloyscitations
- 2017On the origin of residual strain in shape memory alloys: Experimental investigation on evolutions in the microstructure of CuAlBe during complex thermomechanical loadings
Places of action
Organizations | Location | People |
---|
article
Modeling of torsion fatigue in shape memory alloys
Abstract
<jats:p> Fatigue in shape memory alloys is one of the crucial aspects of their behavior; however, the current knowledge is mainly focused on uniaxial fatigue and is inadequate for engineering purposes. In this article, a fatigue criterion based on the stabilized dissipated energy has been presented to investigate the torsional low-cycle fatigue of superelastic shape memory alloys. To this aim, a one-dimensional torsional constitutive model in addition to a modified fully coupled thermomechanical model has been utilized so that the torsional cyclic responses especially in relatively high loading frequencies, which contribute to remarkable temperature variations and consequent response changes, could be taken into account. The calculated stabilized dissipated energy, then, has been used in an energy approach fatigue criterion in order to predict the fatigue life; hence, an explicit relation, which is capable of determining the number of cycles to failure for different loading conditions at a given loading frequency, has been obtained. The numerical results have been appraised for NiTi specimens, and they have been shown to be in a good agreement with the experimental data. Finally, using the proposed approach, the effect of fatigue test parameters on the fatigue life has been studied. </jats:p>