People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Santos, Filipe Amarante Dos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Programming quadric metasurfaces via infinitesimal origami maps of monohedral hexagonal tessellations
- 2020Explorative study on adaptive facades with superelastic antagonistic actuationcitations
- 2019Mechanical modeling of superelastic tensegrity braces for earthquake-proof structurescitations
- 2019Seismic performance of superelastic tensegrity braces
- 2018Toward an adaptive vibration absorber using shape-memory alloys, for civil engineering applicationscitations
- 2018Superelastic tensegrities: matrix formulation and antagonistic actuationcitations
- 2017Shape-memory alloys as macrostrain sensorscitations
- 2016FE Exploratory Investigation on the Performance of SMA-Reinforced Laminated Glass Panelscitations
- 2016Toward a Novel SMA-reinforced Laminated Glass Panelcitations
- 2016Buckling control using shape-memory alloy cablescitations
- 2010Comparison Between Two SMA Constitutive Models for Seismic Applications
- 2008Numerical simulation of superelastic shape memory alloys subjected to dynamic loadscitations
Places of action
Organizations | Location | People |
---|
article
Toward an adaptive vibration absorber using shape-memory alloys, for civil engineering applications
Abstract
<p>This article explores the capabilities of a novel adaptive vibration absorber for civil engineering structures, with regard to frequency self-tuning, based on the temperature modulation of shape-memory alloy restitution elements. This real-time temperature modulation of shape-memory alloys, through Joule effect, enables to control the elastic modulus of these elements, by inducing thermal martensitic transformations, and allows for the adaptation of the stiffness of the absorber, in order to be continuously tunable for a wide frequency range. A series of simulations are performed, using numerical models of a lively footbridge, to give an additional insight into the high potentialities of this adaptive control approach in the mitigation of vibrations in civil engineering structures.</p>