Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seidt, Jeremy

  • Google
  • 4
  • 6
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Full-Field Measurement of Strain and Temperature in Quasi-Static and Dynamic Tensile Tests on Stainless Steel 316L16citations
  • 2017Design and analysis of a synthetic jet actuator-based fluid atomization device6citations
  • 2016Investigation of the thermal-mechanical response of a hybrid material in dynamic loading conditionscitations
  • 2016Full-Field Temperature and Strain Measurement in Dynamic Tension Tests on SS 3043citations

Places of action

Chart of shared publication
Gilat, Amos
3 / 3 shared
Kuokkala, Veli-Tapani
3 / 64 shared
Smith, Jarrod
4 / 4 shared
Gilmore, Paul
1 / 1 shared
Sundaresan, Vishnu-Baba
1 / 1 shared
Sarlin, Essi Linnea
1 / 51 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Gilat, Amos
  • Kuokkala, Veli-Tapani
  • Smith, Jarrod
  • Gilmore, Paul
  • Sundaresan, Vishnu-Baba
  • Sarlin, Essi Linnea
OrganizationsLocationPeople

article

Design and analysis of a synthetic jet actuator-based fluid atomization device

  • Seidt, Jeremy
  • Smith, Jarrod
  • Gilmore, Paul
  • Sundaresan, Vishnu-Baba
Abstract

<jats:p> High-pressure nozzles and ultrasonic atomizers are the two most common devices used to generate sprays. Each of these has some disadvantages, such as controllability in high-pressure nozzles and fluid management challenges in ultrasonic devices. To overcome these limitations, a new atomization technology using a synthetic jet actuator was developed and is presented here. The work includes design and experimental analysis of both the stand-alone synthetic jet actuator and the synthetic jet-based atomization device. The synthetic jet actuator is designed using a model-based approach and characterized by measuring dynamic orifice pressure, diaphragm peak-to-peak displacement, flow rate, and power consumption. Orifice pressure reaches 296 Pa at a flow rate of 16 mL/s and 186 Pa at a flow rate of 37 mL/s for two possible synthetic jet actuator geometries, respectively. Piezoelectric diaphragm displacement reaches 50 µm with a brass substrate thickness of 0.20 mm. The synthetic jet-based atomization device is characterized with high-speed imaging and measurement of water atomization rate. It produces droplets with average sizes of 92–116 µm at maximum rates of 19–28 µL/s, depending on the geometry of the synthetic jet actuator. The outcomes of this work are principles for designing effective synthetic jet-based atomization devices, as well as system-level implementation concepts and control schemes. </jats:p>

Topics
  • impedance spectroscopy
  • ultrasonic
  • atomization
  • brass