Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ashish, G.

  • Google
  • 1
  • 2
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Ultrasonic guided wave propagation and disbond identification in a honeycomb composite sandwich structure using bonded piezoelectric wafer transducers27citations

Places of action

Chart of shared publication
Banerjee, Sauvik
1 / 11 shared
Sikdar, Shirsendu
1 / 29 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Banerjee, Sauvik
  • Sikdar, Shirsendu
OrganizationsLocationPeople

article

Ultrasonic guided wave propagation and disbond identification in a honeycomb composite sandwich structure using bonded piezoelectric wafer transducers

  • Banerjee, Sauvik
  • Ashish, G.
  • Sikdar, Shirsendu
Abstract

<p>A coordinated theoretical, numerical, and experimental study is carried out in an effort to understand ultrasonic guided wave propagation and interaction with disbond, as well as, to identify disbond in a honeycomb composite sandwich structure using surface-bonded piezoelectric wafer transducers. In contrast to most of the work done previously, a fast and efficient two-dimensional semi-analytical model based on global matrix method is used to study dispersion characteristics as well as transient response of the healthy honeycomb composite sandwich structure subjected to relatively high-frequency piezoelectric wafer transducer excitations. Numerical simulations are then conducted using commercially available finite element package, ABAQUS, in order to explore guided wave propagation mechanisms due to the presence of disbond. Numerical simulations are further broadened to investigate the effect of disbond size on the amplitudes and group velocities of propagating guided wave modes. A good agreement is observed between the theoretical, numerical and experimental results in all cases studied. It is noticed that the presence of disbond, in particular, amplifies the first anti-symmetric (A0) mode and increases its group velocity. Finally, based on these modal behaviors, the location of an unknown disbond, within the piezoelectric wafer transducer array is experimentally determined by applying a probability-based damage detection algorithm.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • simulation
  • composite
  • ultrasonic
  • two-dimensional