Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Safdar, Muhammad Mubeen

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of hybrid weaving patterns on mechanical performance of 3D woven structurescitations

Places of action

Chart of shared publication
Khan, Muhammad Imran
1 / 3 shared
Alsunbul, Maha
1 / 1 shared
Fayad, Eman
1 / 1 shared
Ullah, Tehseen
1 / 2 shared
Umair, Muhammad
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Khan, Muhammad Imran
  • Alsunbul, Maha
  • Fayad, Eman
  • Ullah, Tehseen
  • Umair, Muhammad
OrganizationsLocationPeople

article

Effect of hybrid weaving patterns on mechanical performance of 3D woven structures

  • Safdar, Muhammad Mubeen
  • Khan, Muhammad Imran
  • Alsunbul, Maha
  • Fayad, Eman
  • Ullah, Tehseen
  • Umair, Muhammad
Abstract

<jats:p> Generally, 2D woven structures are used in a different high performance applications. But 2D woven natural fibers based structures have poor mechanical properties as compared to glass and other synthetic yarns. One of the possible solutions to overcome this problem is to develop 3D woven structures with natural fibers. The present work developed hemp yarn based three types of novel 3D woven structures, i.e., hybrid through the thickness (HB-1 (TT)), novel woven layer to layer structure (HB-2 (LL)), and layer to layer structure with double warp yarn (HB-3 (LL)). Furthermore to evaluate the impact of interlocking pattern on the static mechanical properties i.e., tensile, tear, puncture resistance and stiffness tests of the strucures were performed. The findings reveal variations in tensile strength among different 3D woven structures. Specifically, the 3D woven HB-3 (LL) configuration demonstrated the highest tensile strength, whereas the HB-1 (TT) structure exhibited the lowest. In the warp orientation, the tensile strength of the 3D woven HB-3 (LL) structure surpassed that of the HB-1 (TT) structure by 25.75%. Additionally, the stiffness results for the 3D woven HB-1 (TT) structure in the warp direction exceeded those of the HB-2 (LL) structure by 55.53%. Moreover, the HB-3 (LL) structure displayed superior puncture resistance compared to other 3D woven configurations. Furthermore, in the warp direction, the tear strength of the 3D woven HB-1 (TT) structure exceeded that of the HB-2 (LL) structure by 16.40%. Statistical analysis utilizing one-way ANOVA (Tukey) revealed that the influence of 3D woven hybrid structures on the outcomes of mechanical testing was statistically significant. </jats:p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • strength
  • tensile strength
  • woven