Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shivam, Ajay

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A 2600-yr multiproxy record for climate and vegetation reconstruction along the Mahanadi River delta, east coast of India2citations

Places of action

Chart of shared publication
Manoj, Madhusudanan Chandrika
1 / 1 shared
Gurumurthy, Gundiga Puttajirao
1 / 1 shared
Chauhan, Mohd Munazir
1 / 1 shared
Alam, Mahboob
1 / 3 shared
Ali, Sajid
1 / 11 shared
Subramanian, Saradambal Ramchandaran
1 / 1 shared
Srivastava, Jyoti
1 / 1 shared
Kawsar, Masud
1 / 1 shared
Sharma, Anupam
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Manoj, Madhusudanan Chandrika
  • Gurumurthy, Gundiga Puttajirao
  • Chauhan, Mohd Munazir
  • Alam, Mahboob
  • Ali, Sajid
  • Subramanian, Saradambal Ramchandaran
  • Srivastava, Jyoti
  • Kawsar, Masud
  • Sharma, Anupam
OrganizationsLocationPeople

article

A 2600-yr multiproxy record for climate and vegetation reconstruction along the Mahanadi River delta, east coast of India

  • Manoj, Madhusudanan Chandrika
  • Gurumurthy, Gundiga Puttajirao
  • Chauhan, Mohd Munazir
  • Alam, Mahboob
  • Shivam, Ajay
  • Ali, Sajid
  • Subramanian, Saradambal Ramchandaran
  • Srivastava, Jyoti
  • Kawsar, Masud
  • Sharma, Anupam
Abstract

<jats:p> Understanding the impact of climate change on the vegetation cover in the past is crucial for predicting the future warming scenario and its consequences. The present study integrates biotic (palynological analysis) and abiotic proxy (sediment chemistry, clay mineral assemblages and grain size end member (EM) analysis) records in a chronologically constrained sedimentary sequence from the southeastern part of the Mahanadi River delta to reconstruct the hydroclimate since 2600 years. The Mahanadi delta sediments are primarily derived from felsic rock source possibly composed of granites or granulites. The dominance of herbaceous taxa, high aridity index and deposition of fine grain (EM1) sediment possibly suggest a relatively cold and dry climate in the study region during ~2600–2100 cal yr BP corresponding to the Iron Age Cold Period (IACP). Presence of diverse mangrove and tree taxa, deposition of coarser sediment (EM3) and relatively high abundance of secondary clay minerals possibly indicate high precipitation associated with the Roman Warm Period (RWP, ~2100–1800 cal yr BP). A decline in mangroves, dominance of herbaceous taxa and high deposition of fine grain (EM2) sediment from ~1800 to 1300 cal yr BP may indicate a relatively drier climate coinciding with the Dark Age Cold Period (DACP). High moisture index and an increased value of Rb/Sr during ~1300 cal yr BP may suggest a wet phase with the onset of the Medieval Climatic Anomaly (MCA) and later shifted to an arid climate during ~1100–800 cal yr BP. After ~800 cal yr BP, a sharp decline in all weathering indices and vegetation cover, dominance of illite indicates a relatively dry climate which could mark the Little Ice Age (LIA, ~800–300 cal yr BP). A small increase in the terrestrial flux, as well as the weathering indices after ~300 cal yr BP, may suggest the onset of recent warming. </jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • mineral
  • grain
  • grain size
  • phase
  • precipitation
  • iron