Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hernandez, Bruno Agostinho

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Properties of PMMA end cap holders affect FE stiffness predictions of vertebral specimenscitations

Places of action

Chart of shared publication
Gill, H. S.
1 / 18 shared
Gheduzzi, Sabina
1 / 8 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Gill, H. S.
  • Gheduzzi, Sabina
OrganizationsLocationPeople

article

Properties of PMMA end cap holders affect FE stiffness predictions of vertebral specimens

  • Gill, H. S.
  • Hernandez, Bruno Agostinho
  • Gheduzzi, Sabina
Abstract

Bone cement is often used, in experimental biomechanics, as a potting agent for vertebral bodies (VB). As a consequence, it is usually included in finite element (FE) models to improve accuracy in boundary condition settings. However, bone cement material properties are typically assigned to these models based on literature data obtained from specimens created under conditions which often differ from those employed for cement end caps. These discrepancies can result in solids with different material properties from those reported. Therefore, this study aimed to analyse the effect of assigning different mechanical properties to bone cement in FE vertebral models. A porcine C2 vertebral body was potted in bone cement end caps, µCT scanned, and tested in compression. DIC was performed on the anterior surface of the specimen to monitor the displacement. Specimen stiffness was calculated from the load-displacement output of the materials testing machine and from the machine load output and average displacement measured by DIC. Fifteen bone cement cylinders with dimensions similar to the cement end caps were produced and subjected to the same compression protocol as the vertebral specimen and average stiffness and Young’ moduli were estimated. Two geometrically identical vertebral body FE models were created from the µCT images, the only difference residing in the values assigned to bone cement material properties: in one model these were obtained from the literature and in the other from the cylindrical cement samples previously tested. The average Young’s modulus of the bone cement cylindrical specimens was 1177±3 MPa, considerably lower than the values reported in the literature. With this value, the FE model predicted a vertebral specimen stiffness 3% lower than that measured experimentally, while when using the value most commonly reported in similar studies, specimen stiffness was overestimated by 150%.

Topics
  • impedance spectroscopy
  • surface
  • cement