People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Doyle, Barry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Novel hybrid biocomposites for tendon graftscitations
- 2023Silane-modified hydroxyapatite nanoparticles incorporated into polydioxanone/poly(lactide-co-caprolactone) creates a novel toughened nanocomposite with improved material properties and in vivo inflammatory responsescitations
- 2022The Technological Advancement to Engineer Next-Generation Stent-Graftscitations
- 2022Bioprinting silk fibroin using two-photon lithography enables control over the physico-chemical material properties and cellular responsecitations
- 2022Multi-response optimization of shrinkage, clamp force, and part weight in simulated injection molding process of a dialysis micro-filtercitations
- 2018Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprintingcitations
- 2017Constitutive modelling of lamb aorta
- 2015Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissuecitations
- 2013On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamicscitations
Places of action
Organizations | Location | People |
---|
article
On the prediction of monocyte deposition in abdominal aortic aneurysms using computational fluid dynamics
Abstract
In abdominal aortic aneurysm disease, the aortic wall is exposed to intense biological activity involving inflammation and matrix metalloproteinase- mediated degradation of the extracellular matrix. These processes are orchestrated by monocytes and rather than affecting the aorta uniformly, damage and weaken focal areas of the wall leaving it vulnerable to rupture. This study attempts to model numerically the deposition of monocytes using large eddy simulation, discrete phase modelling and near-wall particle residence time. The model was first applied to idealised aneurysms and then to three patient-specific lumen geometries using three-component inlet velocities derived from phase-contrast magnetic resonance imaging. The use of a novel, variable wall shear stress-limiter based on previous experimental data significantly improved the results. Simulations identified a critical diameter (1.8 times the inlet diameter) beyond which significant monocyte deposition is expected to occur. Monocyte adhesion occurred proximally in smaller abdominal aortic aneurysms and distally as the sac expands. The near-wall particle residence time observed in each of the patient-specific models was markedly different. Discrete hotspots of monocyte residence time were detected, suggesting that the monocyte infiltration responsible for the breakdown of the abdominal aortic aneurysm wall occurs heterogeneously. Peak monocyte residence time was found to increase with aneurysm sac size. Further work addressing certain limitations is needed in a larger cohort to determine clinical significance. © IMechE 2013.