Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yuan, Jie

  • Google
  • 4
  • 5
  • 18

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Assessing the mechanical and static aeroelastic performance of cellular Kirigami wingbox designs4citations
  • 2023Assessing the mechanical and static aeroelastic performance of cellular Kirigami wingbox designs4citations
  • 2013Buffeting mitigation using carbon nanotube composites: a feasibility study5citations
  • 2013Buffeting mitigation using carbon nanotube composites5citations

Places of action

Chart of shared publication
Allegri, Giuliano
4 / 32 shared
Scarpa, Fabrizio
4 / 100 shared
Ainsworth, Oscar
1 / 1 shared
Li, Qinyu
2 / 3 shared
Alinsworth, Oscar
1 / 1 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Allegri, Giuliano
  • Scarpa, Fabrizio
  • Ainsworth, Oscar
  • Li, Qinyu
  • Alinsworth, Oscar
OrganizationsLocationPeople

article

Buffeting mitigation using carbon nanotube composites

  • Allegri, Giuliano
  • Scarpa, Fabrizio
  • Yuan, Jie
Abstract

<p>The article describes a feasibility study to assess the use of nanotubes-based composites to mitigate tail buffeting. The buffeting of a representative business jet rudder is considered as case study. The baseline rudder configuration consists in a sandwich structure with honeycomb core and carbon/epoxy IM7/8552 skins. The damping characteristics of the baseline rudder configuration are compared to those achieved employing constrained layer Al/3M467 skin patches, and those obtained by dispersing multi-walled carbon nanotubes in the baseline carbon/epoxy material. The loads applied to the rudder during flight are obtained by airworthiness standards. Static and dynamic finite element analyses of the rudder under flight loads are carried out to evaluate the structural response at two different temperatures, -40 °C and +30 °C. IM7/8552/MWNT with 1.5 wt% nanofiller is shown to have the best overall performance for the case study considered here, with the potential of outperforming conventional constrained layer patches for buffeting mitigation.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • nanotube
  • composite