People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lewis, Roger
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Characterisation and tribological testing of recycled crushed glass as an alternative rail sandcitations
- 2022Iron oxide and water paste rheology and its effect on low adhesion in the wheel/rail interfacecitations
- 2021Two-layer laser clad coating as a replacement for chrome electroplating on forged steelcitations
- 2019Residual stress in laser cladded railcitations
- 2015High pressure torsion testing of the wheel/rail interface
- 2011Fiber metamaterials with negative magnetic permeability in the terahertzcitations
- 2010Mapping Railway Wheel Material Wear Mechanisms and Transitionscitations
Places of action
Organizations | Location | People |
---|
article
Characterisation and tribological testing of recycled crushed glass as an alternative rail sand
Abstract
In the UK Network Rail Environmental Sustainability Strategy 2020–2050, minimal waste and the sustainable use of materials are highlighted as core priorities. The ambition is to reuse, repurpose or redeploy all resources. In low adhesion conditions, sand particles are used to enhance traction throughout the network. However, sand is in danger of becoming scarce as many applications demand it. In this study, an alternative adhesion enhancing particle system made of recycled crushed glass is examined in terms of density, size, shape distribution, mineralogy, mechanical properties, and bulk behaviour to better understand their characteristics in comparison with the typical Great British rail sand currently in use and reported in the literature. Their effects on tribological behaviour and surface damage are also investigated using the High-Pressure Torsion test in dry, wet, and leaf-contaminated conditions. Both particle characterisation and tribological testing show promising results. Recycled glass particles provide an acceptable level of traction with a similar level of rail damage as typical rail sand. It is suggested to perform full-scale laboratory and field tests to further confirm the suitability of this material.