Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Toward, Martin

  • Google
  • 1
  • 3
  • 27

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015The effect of temperature on railway rolling noise27citations

Places of action

Chart of shared publication
Thompson, David
1 / 8 shared
Squicciarini, Giacomo
1 / 3 shared
Cottrell, Rebecca
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Thompson, David
  • Squicciarini, Giacomo
  • Cottrell, Rebecca
OrganizationsLocationPeople

article

The effect of temperature on railway rolling noise

  • Thompson, David
  • Toward, Martin
  • Squicciarini, Giacomo
  • Cottrell, Rebecca
Abstract

The stiffness and damping of railpads in a railway track are affected by changes in the temperature of the surrounding environment. This results in the rolling noise radiated by trains increasing as the temperature increases. This paper quantifies this effect for a ballasted track equipped with natural rubber railpads and also studies the behaviour of a cork-reinforced rubber railpad. By means of measurements in a temperature-controlled environment, it is shown that the shear modulus of the natural rubber increases by a factor of six when the temperature is reduced from 40 ℃ to −20 ℃. The loss factor increases from 0.15 at 40 ℃ to 0.65 at −20 ℃. The shear modulus of the cork-reinforced rubber increases by a factor of 10, and the loss factor shows the typical trend of transition between rubbery and glassy regions. The railpad stiffness estimated from decay rate measurements at different temperatures is shown to follow the same trend. Field measurements of the noise from passing trains are performed for temperatures between 0 ℃ and 35 ℃; they show an increase of about 3–4 dB. Similar results are obtained from predictions of noise using the measured dependence of pad stiffness.

Topics
  • impedance spectroscopy
  • rubber