People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mishra, Subhash
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Tribological behavior of Ni-based composite coatings produced by cold spray
- 2024Examine the Optical and Dry Sliding Wear Characteristics of Aluminum Metal Matrix Composites Reinforced With Ilmenite/GR/SN
- 2023Optimization of friction stir processing parameters for improving structural and mechanical properties in in situ AA5083-H111/Al–Fe compositescitations
Places of action
Organizations | Location | People |
---|
article
Tribological behavior of Ni-based composite coatings produced by cold spray
Abstract
<jats:p> The current experiment examined the friction and wear characteristics of Ni-based composite coatings developed by cold spray route. In the developed coatings, fixed concentration of MoS<jats:sub>2</jats:sub> (10 wt. %) and varying concentrations of Ag (5, 10, and 15 wt. %) were incorporated to evaluate the lubricating potential of reinforcing elements. The specimens were slid in various working regimes of loads (6, 11, 16, & 21 N) and at a fixed sliding speed of 0.3 m/s under room temperature (RT). According to the investigation, all participating composite coatings have revealed a lower coefficient of friction (COF) and wear rate as the testing load increased from 6 to 16 N, beyond which a reverse trend was recorded till 21 N. However, composite coating with 10 wt. % Ag has shown excellent tribological properties in terms of the lowest COF (0.29) as well as wear rate (4.0 × 10<jats:sup>−5</jats:sup> mm<jats:sup>3</jats:sup>/Nm) at 16 N and 0.3 m/s. The superior tribological characteristics of the aforesaid coating have been explained and well connected to the synergistic effect of solid lubricants (Ag and MoS<jats:sub>2</jats:sub>) as well as the optimal weight percent of Ag in the creation of tribo layer on the wear track. </jats:p>