People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, S. Anand
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Influence of post-heat treatment with super β transus temperature on the tensile behaviour of LPBF processed Ti6Al4V
- 2022Formulation and Evaluation of Superporus Hydrogel Composite as a Gastro Retentive Drug Delivery for Cefditoren Pivoxil
- 2021Influence of post-heat treatment on microstructure, mechanical, and wear properties of maraging steel fabricated using direct metal laser sintering techniquecitations
- 2016Effects of fiber surface modification on the friction coefficient of luffa fiber/polyester composites under dry sliding conditioncitations
Places of action
Organizations | Location | People |
---|
article
Influence of post-heat treatment with super β transus temperature on the tensile behaviour of LPBF processed Ti6Al4V
Abstract
<jats:p> This paper investigates the tensile behaviour of Laser powder bed fusion (LPBF) processed Ti6Al4 V samples under three build orientations. The effect of microstructural changes from the post-heat treatments (PHTs – 850 °C, 950 °C 1050 °C) was assessed. The microstructural characterization was performed using optical microscopy, X-ray diffraction, and SEM techniques. The tensile tests were performed using a uniaxial universal testing machine (UTM). The fractal dimension analysis was performed on the fractured surfaces using ImageJ software integrated with an open-source MultiFrac plug-in. The PHT at a higher temperature (i.e., 1050 °C) induces a higher amount of β phase than the other PHTs. The PHT performed at 1050 °C exhibited α-Widmanstatten microstructure consisting of elongated β and a small amount of α. The PHT induces an isotropic behaviour in the LPBF-processed samples. However, the ductility of specimens subjected to PHT at 1050 °C showed ∼ 67%, 40%, and 177% improvement under horizontal (0°), inclined (45°), and vertical (90°) orientations than as-printed samples. Further fractal dimension analysis corroborates well with the ductility values of PHT samples. Therefore, the combination of fractography analysis and fractal dimension approach can be a promising methodology towards fractured surface characterization of additively manufactured metal parts. </jats:p>