Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mech, Vinoth

  • Google
  • 2
  • 5
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The effect of fiber stacking sequence on mechanical and morphological behavior of paddy straw/pineapple leaf fiber-reinforced ortho-laminated polyester hybrid composites12citations
  • 2024Integrating response surface methodology and machine learning for analyzing the unconventional machining properties of hybrid fiber‐reinforced composites21citations

Places of action

Chart of shared publication
Sathiyamurthy, S.
2 / 3 shared
Devi, P.
1 / 5 shared
Ananthi, N.
1 / 1 shared
Saravanakumar, S.
1 / 5 shared
Senthilkumar, R.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Sathiyamurthy, S.
  • Devi, P.
  • Ananthi, N.
  • Saravanakumar, S.
  • Senthilkumar, R.
OrganizationsLocationPeople

article

The effect of fiber stacking sequence on mechanical and morphological behavior of paddy straw/pineapple leaf fiber-reinforced ortho-laminated polyester hybrid composites

  • Sathiyamurthy, S.
  • Devi, P.
  • Mech, Vinoth
  • Ananthi, N.
Abstract

<jats:p> The contemporary agricultural natural fiber is effectively used for fabricating composites because of its economical, ample availability, and biodegradability. In this way, the potential material for the reinforcement of hybrid (paddy straw and pineapple leaf) fiber- and ortho-laminated polyester composites was conducted. This research article is focused on the hybridization of untreated, treated, and paddy pulp fiber-reinforced polyester composite laminates. The unidirectional paddy straw fiber and pineapple leaf fiber (PALF) were used in the fabrication process of laminate using a compression molding machine with the mold dimensions of 300 × 300 × 5 mm is used and the investigation of mechanical (tensile, flexural, impact, hardness, shear) behaviors are conducted in the samples as per the standard. Five samples were prepared by varying the fiber content in the matrix in which sample S1 pure polyester plate without any addition of reinforcement. Out of these five samples, sample 4 (S4) produced better tensile, flexural, impact, hardness, and shear values of 28 MPa, 61 MPa, 3.46 Joules, 64 HR L, and 68.7 MPa, respectively. Comparing the laminate samples of S1 and S4 there is a 35.2% increase in the tensile value of S4, similarly, other values also resulted in better hikes. In addition to that, the water absorption properties of the laminate were also evaluated and fiber breakage, fiber pullout, fiber orientation, crack propagation, and voids on the fractured specimens were identified with help of a scanning electron microscope (SEM). Overall, the fabricated hybrid composite laminates were lightweight and has good fiber-matrix bonding with improved mechanical and morphological properties for commercial and home need applications. </jats:p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • crack
  • composite
  • hardness
  • void
  • compression molding