People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohammadi, Masoud
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Mechanical Properties of Recycled Aggregate Concretes Containing Silica Fume and Steel Fibrescitations
- 2020The compressive behavior of a composite cylindrical pyramidal lattice structure manufactured with a new production methodologycitations
- 2020Progressive damage and failure modeling in composite cylindrical pyramidal lattice structurecitations
Places of action
Organizations | Location | People |
---|
article
The compressive behavior of a composite cylindrical pyramidal lattice structure manufactured with a new production methodology
Abstract
<jats:p> In this paper, a new manufacturing method of pyramidal lattice cells has been suggested to produce lattice composite cylinders. Moreover, the effect of fiber volume fraction, vacuum molding, and fiber pre-tension has been investigated on the load-carrying capacity of the cylindrical pyramidal lattice structure of a carbon fiber composite. The carbon fiber composite cylindrical pyramidal lattice structure has been manufactured with laying fibers along the grooves of a silicone mold. Then, it has been subjected to the axial compressive test. Furthermore, to make pre-tension in fibers, a metal mold has been designed. Fiber pre-tension ensures the alignment of the fibers is straight between two nodal points. Additionally, the structure has been analyzed by the finite element buckling procedure. Experimental tests on the structures show that using a metal mold compare to the silicone molding method increases load-carrying capacity up to 48% without significantly varying the weight. Therefore, this method can be used for manufacturing pyramidal lattice structures in the hand layup process. </jats:p>