Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salim, Chihaoui

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Experimental investigation on the performance of ceramics and CBN cutting materials during dry machining of cast iron: Modeling and optimization study using RSM, ANN, and GA2citations

Places of action

Chart of shared publication
Yallese, Mohamed Athmane
1 / 14 shared
Boucherit, Septi
1 / 6 shared
Gasmi, Boutheyna
1 / 1 shared
Mabrouki, Tarek
1 / 22 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Yallese, Mohamed Athmane
  • Boucherit, Septi
  • Gasmi, Boutheyna
  • Mabrouki, Tarek
OrganizationsLocationPeople

article

Experimental investigation on the performance of ceramics and CBN cutting materials during dry machining of cast iron: Modeling and optimization study using RSM, ANN, and GA

  • Yallese, Mohamed Athmane
  • Salim, Chihaoui
  • Boucherit, Septi
  • Gasmi, Boutheyna
  • Mabrouki, Tarek
Abstract

<jats:p> This study focuses on the performance evaluation of CBN and ceramic tools in dry machining of gray cast iron EN GJL-350. The machining factors taken into account during turning are: cutting speed ( Vc), feed rate ( f), depth of cut ( ap), and cutting tool material (CBN, white ceramic, mixed ceramic, and silicon nitride). The first part of this investigation concerns the evaluation of the four cutting materials performance used in terms of tool wear evolutions, 2D and 3D surface roughness and cutting forces variation according to working parameters. The second part exposes the results according to L<jats:sub>32</jats:sub> Taguchi design of experiment. Statistical treatment by ANOVA allowed to quantify the impact of the input factors on the performance parameters, namely the surface roughness ( Ra), the cutting force ( Fz), the cutting power ( Pc), and the specific cutting energy ( Ecs). The response surface methodology (RSM), and the artificial neural network (ANN) approach were adopted to develop mathematical models for predicting the different output parameters. The results of the two methods were compared and discussed. A multi-criteria optimization was performed using the desirability function (DF) approach. The genetic algorithm (GA) was also applied to find pareto fronts. The results found show that CBN is the most efficient material in terms of lower tool wear, surface roughness and cutting forces. The DF method allowed to find an optimal combination ( Vc = 660 m/min, f = 0.13 mm/rev, ap = 0.232 mm, and the CBN material) leading to a compromise between the minimization of ( Ra, Fz, Pc, and Ecs) and the maximization of (MRR). The Pareto fronts found by the (GA) method make it possible to propose a multitude of solutions according to the desired objectives. </jats:p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • nitride
  • Silicon
  • iron
  • grey cast iron
  • electron coincidence spectroscopy