People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, S. Mohan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Metallurgical aspects and electrical resistivity of hardfaced pure copper layers over AISI 347 with cold metal transfer processcitations
- 2023Experimental and finite element analysis of Charpy impact, uniaxial tension and bending test of spin‐arc welded carbon steel 1018 plate
- 2022Thermogravimetric Analysis and Mechanical Properties of Pebble Natural Filler-Reinforced Polymer Composites Produced through a Hand Layup Techniquecitations
- 2021A Symmetrically Diminished Interconnected Database Segmentation Framework Using Data Miningcitations
- 2021Edge Computer-Enabled Internet of Vehicle Applications with Secure Computing and Load Balancingcitations
Places of action
Organizations | Location | People |
---|
article
Metallurgical aspects and electrical resistivity of hardfaced pure copper layers over AISI 347 with cold metal transfer process
Abstract
<jats:p> Pure Copper having excellent electrical conductivity was deposited over AISI 347 substrate using Cold Metal Transfer (CMT) process to obtain quality weld overlays without defects. To improve the electrical conductivity post heat-treatment was performed. The microstructural examination revealed the presence of Cu-FCC and Fe-FCC along with retained delta ferrite at the bi-metallic interface. Also, the existence of bi-phasic spherulites rich in Fe and Cr were noticed in the weld overlay side while Cu spherulites were observed in the AISI 347 substrate adjacent to the bi-metallic interface. Energy Dispersive X-Ray Spectroscopy (EDS) elemental mapping and line scan data confirmed the presence of spherulites due to solid-state diffusion near the interface. The spherulite size was reduced in the heat-treated weld overlays and a small fraction of Cu spherulites were observed in the interface. The microhardness of the as-deposited and heat-treated weld overlays revealed the transition of elements at the bi-metallic interface. Post heat-treatment of Cu weld overlays improved the electrical conductivity significantly in comparison to the as-deposited ones. These electrical measurements suggest that pure Cu weld overlays with sufficient conductivity shall be attained with the CMT process for electrical and power generation applications. </jats:p>