Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cova, Matteo

  • Google
  • 2
  • 5
  • 5

Sacmi (Italy)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017A methodology to consider local material properties in structural optimization4citations
  • 2009Defects vs. Small Notches Competition in Fatigue Failure Initiation of Cast Steel1citations

Places of action

Chart of shared publication
Bertuzzi, Giacomo
1 / 1 shared
Cenni, Riccardo
1 / 2 shared
Susmel, Luca
1 / 27 shared
Tovo, Roberto
1 / 14 shared
Livieri, Paolo
1 / 11 shared
Chart of publication period
2017
2009

Co-Authors (by relevance)

  • Bertuzzi, Giacomo
  • Cenni, Riccardo
  • Susmel, Luca
  • Tovo, Roberto
  • Livieri, Paolo
OrganizationsLocationPeople

article

A methodology to consider local material properties in structural optimization

  • Cova, Matteo
  • Bertuzzi, Giacomo
  • Cenni, Riccardo
Abstract

<jats:p> We propose a finite element methodology to consider local material properties for large cast iron components in shape optimization. We found that considering local strength instead of uniform strength within shape optimization brings to different results in terms of safety-cost balance for the same component. It is well known that local mechanical properties of large cast iron components are defined by their microstructure and defects, which locally affect the strength of the components. Considering or not local mechanical properties can dramatically change a component reliability evaluation during its design. Since a typical industrial aim for shape optimization is trying to get the optimal solution in terms of component quality and cost, considering local material properties is even more important than in traditional design process where no optimization techniques are used. We compute solidification process parameters via finite element solidification analysis, and then we exploit experimental correlation between these parameters and ultimate tensile strength to evaluate the local reliability of the finished component under its static loading conditions. We believe that this methodology represents an opportunity to better design casting components when mechanical properties are deeply affected by their production process as described in the provided examples. In these examples, we wanted to minimize casting cost constrained by a target reliability and we get component cost reduction by considering local material properties. Future research will address the problem of using dedicated casting simulation software instead of general purpose finite element analysis software to compute solidification analysis and then introducing fatigue analysis and correlation between fatigue material properties and casting process output variables. </jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • simulation
  • strength
  • fatigue
  • defect
  • casting
  • iron
  • tensile strength
  • finite element analysis
  • cast iron
  • solidification