Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gupta, Vipul

  • Google
  • 1
  • 1
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Numerical investigation of solidification behavior and inclusion transport with M-EMS in continuous casting mold1citations

Places of action

Chart of shared publication
Jain, Pramod Kumar
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jain, Pramod Kumar
OrganizationsLocationPeople

article

Numerical investigation of solidification behavior and inclusion transport with M-EMS in continuous casting mold

  • Gupta, Vipul
  • Jain, Pramod Kumar
Abstract

<jats:p> The present study deals with the development of a multiphase numerical model of the continuous casting process of steel bloom. Two SEN configurations that differ in port angles are considered for the study of flow pattern, temperature distribution, solidification thickness, interface fluctuation and inclusion behavior during the process. The influence of mold electromagnetic stirring (M-EMS) on the various output parameters is examined. The results show that the upper circulation loop formed in the 15° port angle case is responsible for higher inclusion removal, high interface level, and low solidification thickness in the meniscus region compared to that of the 30° case. The presence of M-EMS completely changes the flow pattern below SEN. Strong rotational flow coupled with oppositely directed swirl flow provides high tangential velocity near the solidification front and high axial velocity in the core region. It results in fluctuation in shell thickness along the casting direction and decreasing the superheated steam penetration. However, flow patterns remain unaffected above the SEN as upwards swirl flow is not able to reach this region. On applying the M-EMS, inclusion entrapment in solidifying shell increases for both 15° and 30° cases. In contrast, inclusion removal at the interface decreases for 15° case and increases for 30° case. </jats:p>

Topics
  • impedance spectroscopy
  • inclusion
  • steel
  • solidification
  • continuous casting