Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ur Rehman Siddiqi, Muftooh

  • Google
  • 3
  • 6
  • 61

Aston University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Development and characterization of kevlar and glass fibers reinforced epoxy/vinyl ester hybrid resin composites10citations
  • 2020Influence of electron beam oscillation patterns on the microstructure, texture, residual stress and mechanical properties of Ti-5Al-2.5Sn alloy weldments8citations
  • 2020Multi-Response Optimization of Tensile Creep Behavior of PLA 3D Printed Parts Using Categorical Response Surface Methodology43citations

Places of action

Chart of shared publication
Shah, Atta Ur Rehman
1 / 4 shared
Ahmad, Hammad
1 / 2 shared
Xie, Lijing
1 / 2 shared
Afaq, S. Kamran
1 / 2 shared
Azad, Muhammad Muzammil
1 / 2 shared
Arif, Saad
1 / 4 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Shah, Atta Ur Rehman
  • Ahmad, Hammad
  • Xie, Lijing
  • Afaq, S. Kamran
  • Azad, Muhammad Muzammil
  • Arif, Saad
OrganizationsLocationPeople

article

Influence of electron beam oscillation patterns on the microstructure, texture, residual stress and mechanical properties of Ti-5Al-2.5Sn alloy weldments

  • Ur Rehman Siddiqi, Muftooh
Abstract

<jats:p> Vacuum electron beam welding is widely employed for the welding of titanium alloys using different beam oscillation patterns. Since these patterns influence the physical phenomenon in the weld pool, its effect on the microstructure, texture, mechanical properties and residual stresses is of prime interest. In order to understand this influence, electron beam welding was used to prepare Ti-5Al-2.5Sn weldments using beam oscillations of triangular and rectangular waveform. It was observed that a change of welding pattern had a strong influence on the residual stresses, impact properties and texture of weld zone while tensile properties were not significantly affected. A partial martensitic transformation was observed in both the triangular and rectangular waveform of oscillations. An increase in alpha lathe width was observed in the fusion zone and similar strength of the rectangular pattern as compared to triangular pattern. Despite of this, the observed higher Vickers hardness of the fusion zone of rectangular pattern as compared to triangular and no-oscillation was attributed to texture strengthening using rectangular waveform. </jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • strength
  • hardness
  • texture
  • titanium
  • titanium alloy