People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Corney, Jonathan
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020Process selection methodology for near net shape manufacturingcitations
- 2019A state of the art review of hydroforming technologycitations
- 2018Design and validation of a fixture for positive incremental sheet formingcitations
- 2018Enabling sheet hydroforming to produce smaller radii on aerospace nickel alloyscitations
- 2018Realising the affective potential of patentscitations
- 2017Correlation between von Mises strain and material thinning in a hydroformed sample of Ti35A aerospace grade titaniumcitations
- 2017A methodology for near net shape process feasibility assessmentcitations
- 2017A methodology for assessing the feasibility of producing components by flow formingcitations
- 2016A methodology for assessing the feasibility of producing components by flow forming
- 2016Flow forming
- 2015Assessing the potential benefits of manufacturing gas turbine components by utilizing hydroforming technology
- 2015Systematic process selection for cold forging
- 2015A review of flow forming processes and mechanismscitations
Places of action
Organizations | Location | People |
---|
article
Design and validation of a fixture for positive incremental sheet forming
Abstract
<p>Incremental sheet forming is an emerging manufacturing technique in which sheet metal is formed into desired shape through the application of localized force using a hemispherical tool. Potential advantages of the process are its relatively low cost and small lead times, and these have to be balanced against the disadvantages of low dimensional accuracy and a limited understanding of the process’ internal mechanics. Incremental sheet forming system can be classified as positive, or negative, depending on whether the sheet material is progressively deformed onto a protrusion or a cavity. In negative systems, the work piece is held on a static fixture; whereas, in positive incremental sheet forming, the fixture must be incrementally lowered onto a protruding die. Although the vertical movement of positive incremental sheet forming fixtures is easily illustrated schematically, its implementation is challenging; if the descent is actuated, the motion has to be carefully coordinated with those of the forming tool; if free sliding on vertical columns, the rig must move without jamming or rocking. This article reports the development and testing of a positive incremental sheet forming fixture design that uses nylon sleeve bushes. Symmetric and asymmetric components were formed using the designed fixture, modular wooden dies and a rotating tool with multiple diameters and the results are discussed.</p>