People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popov, Krastimir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Material microstructure effects in micro-endmilling of Cu99.9E
Abstract
This article presents an investigation of the machining response of metallurgically and mechanically modified materials at the micro-scale. Tests were conducted that involved micro-milling slots in coarse-grained Cu99.9E with an average grain size of 30 mm and ultrafine-grained Cu99.9E with an average grain size of 200 nm, produced by equal channel angular pressing. A new method based on atomic force microscope measurements is proposed for assessing materials’ micro-structure effects in micro-machining, that is, the effects of material homogeneity changes on the minimum chip thickness required for a robust micro-cutting processes with a minimum surface roughness. The investigation has shown that by refining the material microstructure the minimum chip thickness can be reduced and a high surface finish can be obtained. Also, it was concluded that material homogeneity improvements lead to a reduction in surface roughness and surface defects in micro-cutting.