Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singla, Amneesh

  • Google
  • 1
  • 8
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Superior thermomechanical and wetting properties of ultrasonic dual mode mixing assisted epoxy-CNT nanocomposites23citations

Places of action

Chart of shared publication
Kumar, Arun
1 / 21 shared
Jaglan, Vikram
1 / 1 shared
Sharma, Sudesh
1 / 1 shared
Tomar, Vikram
1 / 1 shared
Louchaert, Guillaume
1 / 1 shared
Gupta, Rajeev
1 / 9 shared
Rai, Santosh Kumar
1 / 1 shared
Bhan, Uday
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kumar, Arun
  • Jaglan, Vikram
  • Sharma, Sudesh
  • Tomar, Vikram
  • Louchaert, Guillaume
  • Gupta, Rajeev
  • Rai, Santosh Kumar
  • Bhan, Uday
OrganizationsLocationPeople

article

Superior thermomechanical and wetting properties of ultrasonic dual mode mixing assisted epoxy-CNT nanocomposites

  • Kumar, Arun
  • Jaglan, Vikram
  • Sharma, Sudesh
  • Tomar, Vikram
  • Louchaert, Guillaume
  • Gupta, Rajeev
  • Rai, Santosh Kumar
  • Singla, Amneesh
  • Bhan, Uday
Abstract

<jats:p> High-performance epoxy-carbon nanotube (CNT) nanocomposites were prepared by simultaneous use of ultrasonication and mechanical stirring. The dynamic and static mechanical properties and wetting properties of the nanocomposites were investigated. The dynamic mechanical analysis presented significant enhancement in storage modulus (approximately 124%) and glass transition temperature (approximately 25.6%) of epoxy-CNT nanocomposite at an optimized concentration of the CNT (0.25 wt%) possibly due to the formation of a strong interface between the epoxy and CNT. The tensile test results showed the significant improvement in tensile strength (approximately 47%) and Young’s modulus (approximately 40%) of the epoxy-CNT (0.25 wt%) nanocomposite without significantly affecting its stiffness. The homogeneous dispersion of CNTs in the epoxy matrix resulted in the significant enhancement in the dynamic and static mechanical properties of the nanocomposites. The hydrophilic character of the neat epoxy was tuned to a highly hydrophobic one by incorporation of CNTs in it. A direct relation between the average roughness of the tensile fracture surfaces and the contact angle of the nanocomposites was identified with respect to the concentration of the CNTs. These high-performance highly hydrophobic nanocomposites have the great potential to be used as the structural and functional materials in humid environments. </jats:p>

Topics
  • nanocomposite
  • dispersion
  • surface
  • Carbon
  • nanotube
  • glass
  • glass
  • strength
  • glass transition temperature
  • ultrasonic
  • tensile strength
  • dynamic mechanical analysis
  • ultrasonication