People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Yixiang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Process development for phenylethynyl-terminated PMDA-type asymmetric polyimide composites
Abstract
<jats:p> A new type of polyimide, designated TriA X, has been developed for high-temperature composite applications. TriA X is a polymerized monomeric reactant (PMR)-type polyimide derived from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), 2-phenyl-4,4′-diaminodiphenyl ether (p-ODA), and phenylethynyl phthalic anhydride (PEPA). The polymer has an asymmetric, nonplanar backbone, resulting in an amorphous structure and high toughness. In this work, a TriA X resin (with degree of polymerization n = 7 in the imide oligomer) was investigated for processability and performance in carbon fiber composites. Rheological measurements were performed on an oligomer with a low degree of imidization to understand the chemo-rheology of the resin system and determine a suitable B-staging temperature. A composite molding cycle was designed, which yielded fully consolidated woven carbon fiber laminates. Void contents in panels produced with this molding cycle were <0.1% as measured by image analysis (IA) of polished sections, and <0.2% as measured by X-ray micro-computed tomography (micro-CT). Matrix-dominated mechanical properties of composites fabricated with the TriA X polymer exceeded those of PMR-15 and AFR-PE-4 composites. These mechanical properties and a measured glass transition temperature of 367°C indicate potential for use of this resin system in high-temperature composites. </jats:p>