Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Senthilvelan, T.

  • Google
  • 1
  • 1
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023In vitro degradation analysis and mechanical characterization of PLA-CF composites prepared by fused filament fabrication technique for bio-medical applications2citations

Places of action

Chart of shared publication
Kumar, Krishna
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kumar, Krishna
OrganizationsLocationPeople

article

In vitro degradation analysis and mechanical characterization of PLA-CF composites prepared by fused filament fabrication technique for bio-medical applications

  • Senthilvelan, T.
  • Kumar, Krishna
Abstract

<jats:p> The objective of this research work is to study the in vitro degradation behavior of as-fabricated and annealed Poly Lactic Acid (PLA) composites reinforced with varying volume fractions of carbon fiber (CF).The composites are prepared by fused filament fabrication technique (FFF). Specimens are immersed in simulated body fluid (SBF) for 8 weeks to study the degradation behavior of the composites by examining the change in weight, change in pH and degradation in mechanical properties. The obtained results show that the addition of carbon fiber reinforcement reduces the tensile strength, flexural strength, impact strength and compressive strength of the composites. Further, CF addition enhances the tensile modulus of the composite. The mechanical properties of annealed composites are enhanced when compared to as-fabricated composites. Differential Scanning Calorimeter (DSC) is employed to study the thermal characteristics of the composites and % crystallinity of the composites. CF addition reduces the crystallinity of the composites. Fractographs of the tensile fractured specimens are studied using a scanning electron microscope (SEM). The addition of the carbon fiber reinforcement is found to accelerate the degradation behavior of the composites. There is significant change in weight and pH as well as degradation in mechanical properties of PLA-CF composites immersed in SBF than pure PLA composites. Annealed composites show better degradation resistance than as-fabricated composites. SEM is employed to study the surface morphology of the composites immersed in SBF. </jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • scanning electron microscopy
  • strength
  • composite
  • flexural strength
  • differential scanning calorimetry
  • tensile strength
  • crystallinity
  • field-flow fractionation