People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gereke, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Investigation and Validation of a Shape Memory Alloy Material Model Using Interactive Fibre Rubber Compositescitations
- 2023Micro-Scale Model of rCF/PA6 Spun Yarn Compositecitations
- 2023Lightweight panels with high delamination resistance made of integrally woven truss-like fabric structures
- 2023Theoretical modeling of tensile properties of thermoplastic composites developed from novel unidirectional recycled carbon fiber tape structurecitations
- 2023Simulation of Tetrahedral Profiled Carbon Rovings for Concrete Reinforcements
- 2022Hinged Adaptive Fiber-Rubber Composites Driven by Shape Memory Alloys—Development and Simulationcitations
- 2022Novel dynamic test methods for paperboard composite structurescitations
- 2022Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloyscitations
- 2020Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductorscitations
- 2019Coupled numerical process and structure analysis for textile composites
- 2019Smart Design von Metall-FKV-Hybridstrukturen mit verknüpfter Prozess- und Struktursimulation
- 2018Geometrical design and forming analysis of three-dimensional woven node structurescitations
- 2018Coupled process and structure analysis of metal-FRP-hybrid structures
- 2014Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulationcitations
Places of action
Organizations | Location | People |
---|
article
Theoretical modeling of tensile properties of thermoplastic composites developed from novel unidirectional recycled carbon fiber tape structure
Abstract
<jats:p> This paper aims to conduct theoretical modeling of tensile properties of thermoplastic composites developed from novel unidirectional recycled carbon fiber tapes. Unidirectional recycled carbon fiber tape structure is an innovative, sustainable and cost-efficient prepreg structure designed to develop carbon fiber reinforced plastics with the highest resource efficiency. In order to do modeling, existing theoretical models of tensile properties of unidirectional composites were reviewed in the first part of this paper. Subsequently, reviewed theoretical models were further modified by considering the tensile properties of fibers, fiber length, fiber orientation, fiber volume content and short fiber content to predict the tensile properties of composites based on novel tape structure. The results of this study reveal that the proposed theoretical models are in good agreement with the experimental results. </jats:p>