Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Altaf, Khurram

  • Google
  • 1
  • 3
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheet36citations

Places of action

Chart of shared publication
Al-Ghamdi, Khalid A.
1 / 1 shared
Hussain, Ghulam
1 / 19 shared
Ahmed, Syed Waqar
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Al-Ghamdi, Khalid A.
  • Hussain, Ghulam
  • Ahmed, Syed Waqar
OrganizationsLocationPeople

article

Mechanical properties of an additive manufactured CF-PLA/ABS hybrid composite sheet

  • Al-Ghamdi, Khalid A.
  • Altaf, Khurram
  • Hussain, Ghulam
  • Ahmed, Syed Waqar
Abstract

<jats:p> Laminar composites have widespread applications in the automotive and aircraft industry. This research was aimed to investigate the suitability of fused deposition modeling to produce multi-material laminar composites. Composites comprising of two dissimilar laminates, named as hybrid composites, were printed from acrylonitrile butadiene styrene filament and carbon fiber-reinforced polylactic acid filament (a composite filament) by varying different printing parameters. Tensile tests were conducted to examine the mechanical performance of the produced composite sheet. A detailed analysis of the results revealed that a high ultimate tensile strength is primarily achieved by setting low values of printing speed, layer height, and clad ratio while high elongation is obtained by employing low printing speed, medium layer height, and high clad ratio. The optimum printing conditions were sought out through desirability function with an objective to simultaneously enhance all the considered properties. Further, the composite sheet exhibited a reasonably good combination of tensile properties as compared to its monolithic constituent sheets. Based on the results, it is concluded that the bi-material laminating approach employed herein can produce printed structures with desired properties. </jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • Carbon
  • strength
  • composite
  • tensile strength