Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szymczyk, Anna

  • Google
  • 12
  • 49
  • 166

West Pomeranian University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2022Bio-based aliphatic/aromatic poly(trimethylene furanoate/sebacate) random copolymers:Correlation between mechanical, gas barrier performances and compostability and copolymer composition22citations
  • 2022Relaxation Dynamics of Biomass-Derived Copolymers With Promising Gas-Barrier Properties3citations
  • 2021Thermally and electrically conducting polycarbonate/elastomer blends combined with multiwalled carbon nanotubes14citations
  • 2020Laser-Induced Periodic Surface Structuring of Poly(trimethylene terephthalate) Films Containing Tungsten Disulfide Nanotubes6citations
  • 2020Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites25citations
  • 2019Laterally-resolved mechanical and tribological properties of laser-structured polymer nanocompositescitations
  • 2019Laterally-resolved mechanical and tribological properties of laser-structured polymer nanocomposites10citations
  • 2018Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite12citations
  • 2018Interfacial interactions in PTT–PTMO/polyhedral oligomeric silsesquioxane (POSS) nanocomposites and their impact on mechanical, thermal, and dielectric properties8citations
  • 2017Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives8citations
  • 2015Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate)/Graphene Oxide Nanocomposites18citations
  • 2014Structure and Properties of Nanocomposites based on PTT-block-PTMO Copolymer and Graphene Oxide prepared by in Situ Polymerization40citations

Places of action

Chart of shared publication
Sablong, Rafaël J.
1 / 2 shared
Zubkiewicz, Agata
3 / 7 shared
Soccio, Michelina
1 / 18 shared
Guidotti, Giulia
1 / 6 shared
Siracusa, Valentina
1 / 4 shared
Lotti, Nadia
1 / 21 shared
Paszkiewicz, Sandra
10 / 17 shared
Sanz, Alejandro
1 / 6 shared
García-Gutiérrez, Mari Cruz
1 / 11 shared
Ezquerra, Tiberio A.
7 / 43 shared
Nogales, Aurora
2 / 23 shared
Linares, Amelia
2 / 5 shared
Fereidoon, A.
1 / 2 shared
Linares, A.
1 / 3 shared
Taraghi, I.
1 / 1 shared
Ezquerra, T. A.
1 / 5 shared
Paszkiewicz, S.
1 / 5 shared
Szymczyk, A.
1 / 7 shared
Roslaniec, Z.
1 / 7 shared
Wilpiszewska, K.
1 / 1 shared
Gude, Mike
1 / 775 shared
Piesowicz, E.
1 / 4 shared
Stanik, R.
1 / 10 shared
Moreno Pedraz, Pablo Manuel
4 / 10 shared
Prada-Rodrigo, Javier
1 / 3 shared
Rebollar, Esther
5 / 21 shared
Rodríguez-Beltrán, René I.
5 / 6 shared
Franciszczak, Piotr
1 / 1 shared
Janowska, Izabela
1 / 8 shared
Kochmanska, Agnieszka
1 / 3 shared
Moreno, Pablo
1 / 6 shared
Martínez-Tong, Daniel E.
2 / 6 shared
Reyes-Contreras, Adela
2 / 2 shared
Hernández, Margarita
1 / 4 shared
Rosłaniec, Zbigniew
3 / 3 shared
Castillejo, Marta
2 / 16 shared
Dutkiewicz, Michał
1 / 3 shared
Dudziec, Beata
1 / 14 shared
Pawlikowska, Daria
1 / 1 shared
Marciniec, Bogdan
1 / 14 shared
Pawelec, Iwona
1 / 1 shared
Spitalsky, Zdenko
1 / 5 shared
Roslaniec, Zbigniew
1 / 2 shared
Lisiecki, Slawomir
1 / 1 shared
Mosnácek, Jaroslav
1 / 1 shared
Jotko, Marek
1 / 1 shared
Špitalský, Zdenko
1 / 5 shared
Mosnáček, Jaroslav
1 / 2 shared
Kwiatkowski, Konrad
1 / 3 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2015
2014

Co-Authors (by relevance)

  • Sablong, Rafaël J.
  • Zubkiewicz, Agata
  • Soccio, Michelina
  • Guidotti, Giulia
  • Siracusa, Valentina
  • Lotti, Nadia
  • Paszkiewicz, Sandra
  • Sanz, Alejandro
  • García-Gutiérrez, Mari Cruz
  • Ezquerra, Tiberio A.
  • Nogales, Aurora
  • Linares, Amelia
  • Fereidoon, A.
  • Linares, A.
  • Taraghi, I.
  • Ezquerra, T. A.
  • Paszkiewicz, S.
  • Szymczyk, A.
  • Roslaniec, Z.
  • Wilpiszewska, K.
  • Gude, Mike
  • Piesowicz, E.
  • Stanik, R.
  • Moreno Pedraz, Pablo Manuel
  • Prada-Rodrigo, Javier
  • Rebollar, Esther
  • Rodríguez-Beltrán, René I.
  • Franciszczak, Piotr
  • Janowska, Izabela
  • Kochmanska, Agnieszka
  • Moreno, Pablo
  • Martínez-Tong, Daniel E.
  • Reyes-Contreras, Adela
  • Hernández, Margarita
  • Rosłaniec, Zbigniew
  • Castillejo, Marta
  • Dutkiewicz, Michał
  • Dudziec, Beata
  • Pawlikowska, Daria
  • Marciniec, Bogdan
  • Pawelec, Iwona
  • Spitalsky, Zdenko
  • Roslaniec, Zbigniew
  • Lisiecki, Slawomir
  • Mosnácek, Jaroslav
  • Jotko, Marek
  • Špitalský, Zdenko
  • Mosnáček, Jaroslav
  • Kwiatkowski, Konrad
OrganizationsLocationPeople

article

Thermally and electrically conducting polycarbonate/elastomer blends combined with multiwalled carbon nanotubes

  • Fereidoon, A.
  • Linares, A.
  • Taraghi, I.
  • Ezquerra, T. A.
  • Paszkiewicz, S.
  • Szymczyk, Anna
  • Szymczyk, A.
  • Roslaniec, Z.
  • Wilpiszewska, K.
  • Gude, Mike
  • Piesowicz, E.
  • Stanik, R.
Abstract

<jats:p> In this article, we have studied thermal and dielectric conductivity and morphology of polycarbonate (PC)/ethylene–propylene copolymer (EPC)/multiwalled carbon nanotubes (MWCNTs) nanocomposites. Transmission electron microscopy has been used to investigate the localization and migration of MWCNTs within the matrix. The MWCNTs were located in the PC phase and at the interface of PC and EPC. The results showed that the thermal conductivity of the PC decreased with the increasing content of EPC elastomeric particles. However, at the same time, one could observe an increase of the thermal conductivity in the polymer blends along with an addition of MWCNT. The electrical conductivity of the PC/EPC blends containing 10 wt% of EPC increased with the incorporation of MWCNTs, and the conducting paths were formed at additive content less than 0.5 wt% of MWCNT. </jats:p>

Topics
  • nanocomposite
  • Carbon
  • phase
  • nanotube
  • laser emission spectroscopy
  • transmission electron microscopy
  • copolymer
  • thermal conductivity
  • electrical conductivity
  • elastomer
  • polymer blend