People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hasan, Mir Mohammad Badrul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Tensile and impact properties of thermoplastic fibre hybrid composites based on air textured commingling hybrid yarns composed of carbon/aramid/polyamide 6 and carbon/glass/polyamide 6 filament yarns
- 2023Micro-Scale Model of rCF/PA6 Spun Yarn Compositecitations
- 2023Recent developments in yarn formation technology for producing innovative hybrid yarn structures from staple carbon and thermoplastic fibers for high-performance compositescitations
- 2023Development of an Innovative Glass/Stainless Steel/Polyamide Commingled Yarn for Fiber–Metal Hybrid Compositescitations
- 2022From Grave to Cradle - Development of Weft Knitted Fabrics Based on Hybrid Yarns from Recycled Carbon Fibre Reclaimed by Solvolytic Process from of EOL-Componentscitations
- 2022Processing of waste carbon and polyamide fibers for high performance thermoplastic composites: A novel manufacturing technology for unidirectional tapes structurecitations
- 2021Development of a new hybrid yarn construction from recycled carbon fibres for high-performance composites. Part III: Influence of sizing on textile processing and composite propertiescitations
- 2019Influence of process parameters on the tensile properties of DREF-3000 friction spun hybrid yarns consisting of waste staple carbon fiber for thermoplastic compositescitations
- 2017Investigations on the Manufacturing and Mechanical Properties of Spun Yarns Made from Staple CF for Thermoset Compositescitations
- 2013High temperature resistant insulated hybrid yarns for carbon fiber reinforced thermoplastic compositescitations
- 2011Electro-mechanical properties of friction spun conductive hybrid yarns made of carbon filaments for compositescitations
- 2009Correlation Between Wettability and Cleanability of Polyester Fabrics Modified by a Soil Release Polymer and Their Topographic Structurecitations
- 2009Comparison of tensile, thermal, and thermo‐mechanical properties of polyester filaments having different cross‐sectional shapecitations
- 2008Influence of the Cross-sectional Geometry on Wettability and Cleanability of Polyester Woven Fabricscitations
Places of action
Organizations | Location | People |
---|
article
Development of a new hybrid yarn construction from recycled carbon fibres for high-performance composites. Part III: Influence of sizing on textile processing and composite properties
Abstract
<jats:p> The processing of recycled carbon fibres (rCFs) into hybrid yarn constructions is a promising recycling option, converting rCF into products with added value. Along with fibre length and strength, the sizing of rCF crucially affects their processing behaviour and subsequent composite properties. This article reports on the influence of sizing on the processing properties of rCF by mixing with polyamide (PA) 6 fibres to form a hybrid yarn construction. Moreover, resulting composite properties were studied as well. Thus, commercially available CF with thermoplastic and thermoset matrix compatible sizing in addition to pyrolyzed rCF without sizing was used for the investigations presented in this article. Results revealed that different sizing strongly influence the processing of rCF and PA 6 into hybrid yarn constructions. The opening and bending behaviour of rCF bundles with different sizing varied during the carding process so that various degrees of fibre shortening occurred. As expected, the sizing developed for thermoplastic matrix enabled the highest tensile and flexural strengths in thermoplastic composites. These findings greatly contribute to the understanding of rCF processing from different or unknown sources on industrial scale. </jats:p>