Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rana, Sravendra

  • Google
  • 6
  • 35
  • 182

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Self-healing epoxy/PDMS/graphene oxide nanocomposites for anti-corrosive applications1citations
  • 2021Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites32citations
  • 2019Soft Self-Healing Nanocomposites58citations
  • 2019Reversible Self-Healing Carbon-Based Nanocomposites for Structural Applications66citations
  • 2019Nitrogen-doped graphene stabilized copper nanoparticles for Huisgen [3+2] cycloaddition "click" chemistry25citations
  • 2005Photodegradation of ethylene/propylene/polar monomers co- and terpolymers. I - Prepared by group 4 catalyst systemscitations

Places of action

Chart of shared publication
Prasanna Sanka, R. V. Siva
1 / 1 shared
Saxena, Vishesh
1 / 1 shared
Moorthi, Krishna
1 / 1 shared
Tewari, Chetna
1 / 4 shared
Chaurasia, Alok
1 / 2 shared
Sahoo, Nanda Gopal
1 / 8 shared
Mehta, Sps
1 / 1 shared
Singhal, Shailey
1 / 1 shared
Bohra, Bhashkar S.
1 / 1 shared
Dhali, Sunil
1 / 4 shared
Pandey, Neema
1 / 1 shared
Michaud, Véronique
2 / 279 shared
Pandey, Shyam
2 / 2 shared
Sanka, R. V. Siva Prasanna
2 / 2 shared
Leterrier, Yves
2 / 25 shared
Krishnakumar, Balaji
1 / 2 shared
Raimondo, Marialuigia
1 / 20 shared
Binder, Wolfgang H.
2 / 12 shared
Vertuccio, Luigi
1 / 27 shared
Calabrese, Elisa
1 / 6 shared
Barra, Giuseppina
1 / 7 shared
Sorrentino, Andrea
1 / 17 shared
Michael, Philipp
1 / 2 shared
Naddeo, Carlo
1 / 11 shared
Guadagno, Liberata
1 / 31 shared
Balaji, K.
1 / 2 shared
Srivastava, Anurag
1 / 1 shared
Srivastava, Monika
1 / 1 shared
Reddy, K. Raghunatha
1 / 1 shared
Prasad, A. Vishwa
1 / 1 shared
Singh, R. P.
1 / 9 shared
Fernandes, Susete
1 / 8 shared
Marques, Maria M.
1 / 3 shared
Correia, Sandra
1 / 6 shared
Lonkar, S. P.
1 / 4 shared
Chart of publication period
2022
2021
2019
2005

Co-Authors (by relevance)

  • Prasanna Sanka, R. V. Siva
  • Saxena, Vishesh
  • Moorthi, Krishna
  • Tewari, Chetna
  • Chaurasia, Alok
  • Sahoo, Nanda Gopal
  • Mehta, Sps
  • Singhal, Shailey
  • Bohra, Bhashkar S.
  • Dhali, Sunil
  • Pandey, Neema
  • Michaud, Véronique
  • Pandey, Shyam
  • Sanka, R. V. Siva Prasanna
  • Leterrier, Yves
  • Krishnakumar, Balaji
  • Raimondo, Marialuigia
  • Binder, Wolfgang H.
  • Vertuccio, Luigi
  • Calabrese, Elisa
  • Barra, Giuseppina
  • Sorrentino, Andrea
  • Michael, Philipp
  • Naddeo, Carlo
  • Guadagno, Liberata
  • Balaji, K.
  • Srivastava, Anurag
  • Srivastava, Monika
  • Reddy, K. Raghunatha
  • Prasad, A. Vishwa
  • Singh, R. P.
  • Fernandes, Susete
  • Marques, Maria M.
  • Correia, Sandra
  • Lonkar, S. P.
OrganizationsLocationPeople

article

Effect of graphene oxide on the mechanical and thermal properties of graphene oxide/hytrel nanocomposites

  • Tewari, Chetna
  • Chaurasia, Alok
  • Sahoo, Nanda Gopal
  • Mehta, Sps
  • Singhal, Shailey
  • Bohra, Bhashkar S.
  • Rana, Sravendra
  • Dhali, Sunil
  • Pandey, Neema
Abstract

<jats:p> Polymer nanocomposites offer enhancement in thermomechanical and physicochemical properties of polymers with the presence of a little amount of nanostructured fillers such as carbon nanotubes, graphene, and layered silicates. A facile and rapid preparation of hytrel (HTL)-graphene oxide (GO) nanocomposites is done via a solution mixing method. The influence of GO content (0.1, 0.5, 1, 2, and 5 wt%) on mechanical and thermal properties of GO/HTL nanocomposites has been evaluated by using various techniques such as tensile testing, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. The thermal stability and mechanical properties of GO/HTL nanocomposites were increased with increasing GO content. The composites have valuable improvement in tensile strength (139%) and storage modulus (72%) for HTL composite containing 5 wt% GO. The incorporation of GO into HTL polymer shows enhancement in thermal and mechanical properties due to the presence of strongest noncovalent interaction (π–π stacking) between the interface of nanocomposites. These enhanced physical properties of GO/HTL composites show its potential use in structural application. </jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • Carbon
  • nanotube
  • strength
  • layered
  • thermogravimetry
  • differential scanning calorimetry
  • tensile strength
  • dynamic mechanical analysis