People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schommer, Dominic
Institute for Composite Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Digitizing the Production of Carbon Fiber Sheet Molding Compounds
- 2020Deep drawing of organic sheets made of hybrid recycled carbon and thermoplastic polyamide 6 staple fiber yarnscitations
- 2019Material characterization and compression molding simulation of CF-SMC materials in a press rheometry testcitations
Places of action
Organizations | Location | People |
---|
article
Deep drawing of organic sheets made of hybrid recycled carbon and thermoplastic polyamide 6 staple fiber yarns
Abstract
<jats:p>Fully impregnated fiber-reinforced thermoplastic sheets, or the so-called organic sheets, allow the thermoforming of parts within very short cycle times. This article describes the development of the next generation of organic sheet materials based on recycled carbon fibers and polyamide 6 staple fiber yarns. Regardless of the recycled nature of the fibers and an average fiber length of 25 mm, the organic sheets still reach a comparable level of the tensile strength and modulus of continuous fiber-reinforced organic sheets made of virgin CF with the same reinforcement structure. Due to the staple fiber yarn architecture, the organic sheets feature a deep-drawing ability of a total plastic deformation up to 50% in the fiber direction. The effect is enabled via an interfiber sliding when the organic sheet is processed in the molten condition. The creation of a finite element model for the thermoforming process simulation of the material is also presented. Predictions of the plastic strain distribution and its magnitude are shown to agree well with forming experiments where a curved geometry is formed to different depths.</jats:p>