Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Amador, Gilles

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012In Vitro Characterization of Calcium Phosphate Biomaterial Loaded with Linezolid for Osseous Bone Defect Implantation6citations

Places of action

Chart of shared publication
Bouler, Jean-Michel
1 / 6 shared
Weiss, Pierre
1 / 10 shared
Merle, Christian
1 / 2 shared
Gautier, Hélène
1 / 2 shared
Plumecocq, Adrien
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Bouler, Jean-Michel
  • Weiss, Pierre
  • Merle, Christian
  • Gautier, Hélène
  • Plumecocq, Adrien
OrganizationsLocationPeople

article

In Vitro Characterization of Calcium Phosphate Biomaterial Loaded with Linezolid for Osseous Bone Defect Implantation

  • Bouler, Jean-Michel
  • Weiss, Pierre
  • Merle, Christian
  • Gautier, Hélène
  • Plumecocq, Adrien
  • Amador, Gilles
Abstract

<jats:p> Osteomyelitis is a severe bone infection frequently caused by Staphylococcus aureus, which shows significant resistance to methicillin. One therapeutic treatment would be to insert a bone substitute loaded to an antibiotic, which would enable the bone to be filled while the illness is being treated. Linezolid is an oxazolidinone antibiotic with a large spectrum of action. It is effective against most Gram-positive bacteria and displays a specific mode of action. The aim of this work was to study the association of linezolid with a calcium phosphate-deficient apatite matrix. Granules containing 10% and 50% linezolid were prepared by wet granulation and characterized. Porosity analyses performed by mercury porosimetry and scanning electron microscopy revealed that grain porosity with 50% linezolid was higher than that of the grains containing 10% linezolid. NMR analyses showed no change in structure of linezolid when linked to calcium-deficient apatite. These results were confirmed by studying the antibacterial activity of linezolid, which remained proportional to the quantity of loaded linezolid, proving that the antibiotic released was active. The in vitro release time varied from 9 days for granules containing 10% linezolid to 26 days for granules containing 50% linezolid. </jats:p>

Topics
  • impedance spectroscopy
  • grain
  • scanning electron microscopy
  • defect
  • porosity
  • Calcium
  • Nuclear Magnetic Resonance spectroscopy
  • porosimetry
  • Mercury