Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wohlmuth, Dominik

  • Google
  • 3
  • 18
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Valorisation of metallurgical residues via carbothermal reduction5citations
  • 2023Mineral Residues and By-Products Upcycled into Reactive Binder Components for Cementitious Materials5citations
  • 2014Order vs. disorder — a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminate90citations

Places of action

Chart of shared publication
Gatschlhofer, Christoph
1 / 1 shared
Doschek-Held, Klaus
2 / 5 shared
Sorger, Christoph
1 / 2 shared
Juhart, Joachim
2 / 17 shared
Steindl, Florian Roman
2 / 6 shared
Weisser, Katharina
2 / 2 shared
Krammer, Anna
1 / 3 shared
Vallazza-Grengg, Cyrill
1 / 26 shared
Mittermayr, Florian
1 / 29 shared
Letofsky-Papst, Ilse
1 / 17 shared
Hofer, Ferdinand
1 / 26 shared
Hanzu, Ilie
1 / 6 shared
Wilkening, H. Martin R.
1 / 6 shared
Bottke, Patrick
1 / 5 shared
Amenitsch, Heinz
1 / 46 shared
Epp, Viktor
1 / 1 shared
Kriechbaum, Manfred
1 / 16 shared
Bitschnau, Brigitte
1 / 6 shared
Chart of publication period
2024
2023
2014

Co-Authors (by relevance)

  • Gatschlhofer, Christoph
  • Doschek-Held, Klaus
  • Sorger, Christoph
  • Juhart, Joachim
  • Steindl, Florian Roman
  • Weisser, Katharina
  • Krammer, Anna
  • Vallazza-Grengg, Cyrill
  • Mittermayr, Florian
  • Letofsky-Papst, Ilse
  • Hofer, Ferdinand
  • Hanzu, Ilie
  • Wilkening, H. Martin R.
  • Bottke, Patrick
  • Amenitsch, Heinz
  • Epp, Viktor
  • Kriechbaum, Manfred
  • Bitschnau, Brigitte
OrganizationsLocationPeople

article

Valorisation of metallurgical residues via carbothermal reduction

  • Gatschlhofer, Christoph
  • Doschek-Held, Klaus
  • Sorger, Christoph
  • Juhart, Joachim
  • Steindl, Florian Roman
  • Wohlmuth, Dominik
  • Weisser, Katharina
  • Krammer, Anna
Abstract

The decarbonisation of the steel and cement industry is of utmost importance in tackling climate change. Hence, steel production in modern integrated steel mills will be shifted towards electric arc furnaces in the future, in turn causing dwindling supplies of blast furnace slag, which is used as a supplementary cementitious material inter alia to reduce the CO2 emissions of cement production. Achieving a sustainable circular steel and building material economy requires the valorisation of currently landfilled steel slags and investigating utilisation options for electric arc furnace slag, which is increasingly being generated. For this purpose, different metallurgical residues and by-products were treated by carbothermal reduction in an inductively heated graphite crucible and then rapidly cooled by wet granulation, yielding a slag fraction similar to granulated blast furnace slag and a metal fraction valuable as a secondary raw material. A spreadsheet-based model was developed to calculate residue combinations to accomplish target compositions of the slag and metal fractions to fulfil previously identified requirements of the targeted cementitious and ferrous products. The results demonstrate the high accuracy of the model in predicting the properties (e.g. main oxide composition) of the generated slag and metal fraction, which fulfil the needed requirements for their use as (i) a supplementary cementitious material and (ii) a secondary raw material in steel production.

Topics
  • impedance spectroscopy
  • steel
  • cement