People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Csetényi, L. J.
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Mechanical processing of wet stored fly ash for use as a cement component in concrete
- 2024Assessing setting times of cementitious materials using semi‑adiabatic calorimetry
- 2023Portlandcementek Kötési Idejének Meghatározása Féladiabatikus Kalorimetriás Módszerrel
- 2023Fungal biorecovery of cerium as oxalate and carbonate biomineralscitations
- 2022Impact of fly ash production and sourcing changes on chemical and physical aspects of concrete durabilitycitations
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2022Influence of wet storage on fly ash reactivity and processing for use in concretecitations
- 2022Fungal-induced CaCO3 and SrCO3 precipitationcitations
- 2021Potential of Weathered Blast Furnace Slag for use as an Addition in Concretecitations
- 2020Oil-based mud waste reclamation and utilisation in low-density polyethylene compositescitations
- 2019Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus nigercitations
- 2019Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungicitations
- 2017Evaluation of Fly Ash Reactivity Potential Using a Lime Consumption Testcitations
- 2016Abrasion resistance of sustainable green concrete containing waste tire rubber particlescitations
- 2016Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixturescitations
- 2015Influence of Portland cement characteristics on air-entrainment in fly ash concretecitations
- 2015Sustainable use of marble slurry in concretecitations
- 2015Durability studies on concrete containing wollastonitecitations
- 2013Mechanical and durability studies on concrete containing wollastonite-fly ash combinationcitations
- 2013Evaluating Test Methods for Rapidly Assessing Fly Ash Reactivity for Use in Concrete
- 2010Mechanisms of sulfate heave prevention in lime stabilized clays through pozzolanic additionscitations
- 2003Alkali activation of PFA
- 2002Effect of potassium on setting times of borate admixed cement pastes
- 2001Phase equilibrium study in the CaO-K2O-B2O3-H2O system at 25°Ccitations
Places of action
Organizations | Location | People |
---|
article
Oil-based mud waste reclamation and utilisation in low-density polyethylene composites
Abstract
Oil-based mud (OBM) waste from the oil and gas exploration industry can be valorised to tailor-made reclaimed clay-reinforced low-density polyethylene (LDPE) nanocomposites. This study aims to fill the information gap in the literature and to provide opportunities to explore the effective recovery and recycling techniques of the resources present in the OBM waste stream. Elemental analysis using inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray fluorescence analysis, chemical structural analysis by Fourier transform infrared (FTIR) spectroscopy, and morphological analysis of LDPE/organo-modified montmorillonite (LDPE/MMT) and LDPE/OBM slurry nanocomposites by scanning electron microscopy (SEM) have been conducted. Further analysis including calorimetry, thermogravimetry, spectroscopy, microscopy, energy dispersive X-ray analysis and X-ray diffraction (XRD) was carried out to evaluate the thermo-chemical characteristics of OBM waste and OBM clay-reinforced LDPE nanocomposites, confirming the presence of different clay minerals including inorganic salts in OBM slurry powder. The microscopic analysis revealed that the distance between polymer matrix and OBM slurry filler is less than that of MMT, which suggests better interfacial adhesion of OBM slurry compared with the adhesion between MMT and LDPE matrix. This was also confirmed by XRD analysis, which showed the superior delamination structure OBM slurry compared with the structure of MMT. There is a trend noticeable for both of these fillers that the nanocomposites with higher percentage filler contents (7.5 and 10.0 wt% in this case) were indicated to act as a thermal conductive material. The heat capacity values of nanocomposites decreased about 33% in LDPE with 7.5 wt% MMT and about 17% in LDPE with 10.0 wt% OBM slurry. It was also noted, for both nanocomposites, that the residue remaining after 1000°C increases with the incremental wt% of fillers in the nanocomposites. There is a big difference in residue amount (in %) left after ...