People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sixta, Herbert
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Polymer-Based n-Type Yarn for Organic Thermoelectric Textilescitations
- 2023Development of cellulose films by means of the Ioncell® technology, as an alternative to commercial filmscitations
- 2021Exploring digital image correlation technique for the analysis of the tensile properties of all-cellulose compositescitations
- 2021Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber compositescitations
- 2021Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometricscitations
- 2021Process-dependent nanostructures of regenerated cellulose fibres revealed by small angle neutron scatteringcitations
- 2021The fiber-matrix interface in Ioncell cellulose fiber composites and its implications for the mechanical performancecitations
- 2020Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fiberscitations
- 2019Water-induced crystallization and nano-scale spinodal decomposition of cellulose in NMMO and ionic liquid dopecitations
- 2018Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe techniquecitations
- 2018Adhesion properties of regenerated lignocellulosic fibres towards poly (lactic acid) microspheres assessed by colloidal probe techniquecitations
- 2016Deformation mechanisms in ionic liquid spun cellulose fiberscitations
- 2016Ionic Liquids for the Production of Man-Made Cellulosic Fiberscitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2016Wood biorefinery based on γ-valerolactone/water fractionationcitations
- 2015Ioncell-Fcitations
- 2015Ioncell-F:A High-strength regenerated cellulose fibre
- 2015Purification and characterization of kraft lignincitations
- 2015Ionic liquids for the production of man-made cellulosic fibers:Opportunities and challengescitations
- 2015High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solutioncitations
- 2014Switchable Ionic Liquids as Delignification Solvents for Lignocellulosic Materialscitations
- 2010Evaluation of experimental parameters in the microbond test with regard to lyocell fiberscitations
Places of action
Organizations | Location | People |
---|
article
Effect of single-fiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber composites
Abstract
The present study concentrates on a series of experiments and numerical analyses for understanding the effects of fiber volume fraction (VF) and draw ratio (DR) on the effective elastic properties of unidirectional composites made from an epoxy resin matrix with a continuous fiber reinforcement. Lyocell-type regenerated cellulose filaments (Ioncell) spun with DRs of 3, 6, and 9 were used. In accordance with the specimens in situ, the fibers were modeled as slender solid elements, for which the ratio between the diameter and length was taken to be much less than unity and deposited inside the matrix with the random sequential adsorption algorithm. The embedded element method was thereafter used in the numerical framework due to its computational advantages and reasonable predictions for continuous fiber reinforced composites. Experiments and numerical investigations were carried out, the results of which were compared, and positive trends for both fiber VFs and DRs on the effective properties were observed. The presented experimental and numerical results and models herein are believed to advance the state of the art in the mechanical characterization of composites with continuous fiber reinforcement. ; Peer reviewed