Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khalili, Seyyed Mohammad Reza

  • Google
  • 1
  • 1
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Static and vibration properties of randomly oriented shape memory alloy short wires reinforced epoxy resin3citations

Places of action

Chart of shared publication
Saeedi, Ali
1 / 8 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Saeedi, Ali
OrganizationsLocationPeople

article

Static and vibration properties of randomly oriented shape memory alloy short wires reinforced epoxy resin

  • Khalili, Seyyed Mohammad Reza
  • Saeedi, Ali
Abstract

<jats:p> The static and vibrational properties of randomly oriented shape memory alloy short wires reinforced epoxy resin are determined considering the interface effect between shape memory alloy wires and the resin. First, experimental pull-out test is utilized to obtain the interfacial shear strength between the reinforcement and the matrix. Then, using the finite element simulation, the elastic modulus of the equivalent fiber is determined. Micromechanics model based on Eshelby’s equivalent inclusion and Halpin-Tsai method is used to predict the elastic modulus of shape memory alloy/epoxy composites theoretically. Experimental tensile tests in the present work beside the reported vibration results in the literature are used in order to validate the accuracy of the model. The results showed that ignoring the interface effect in modeling the behavior of shape memory alloy/epoxy composites causes significant errors, especially in high-volume fraction of the shape memory alloy wires. Moreover, the critical aspect ratio of the shape memory alloy wires is obtained as a function of temperature. The critical values for the aspect ratio are about 30, 40 and 42 for 50℃, 25℃ and 0℃, respectively. </jats:p>

Topics
  • impedance spectroscopy
  • inclusion
  • simulation
  • strength
  • composite
  • interfacial
  • resin
  • wire