People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rezazadeh, Mohammadali
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Stress–strain model for FRP-confined circular concrete columns developing structural softening behaviorcitations
- 2023A novel analytical framework for assessing the impact response of SFRC beamcitations
- 2023Analytical model to predict axial stress-strain behavior of heat-damaged unreinforced concrete columns wrapped by FRP jacketcitations
- 2022Modelling the high strain rate tensile behavior of steel fiber reinforced concrete using artificial neural network approachcitations
- 2021Modelling the High Strain Rate Tensile Behavior of Steel Fiber Reinforced Concrete Using Artificial Neural Network Approachcitations
- 2021An analytical approach for evaluating the impact response of steel fiber reinforced concrete beam
- 2021Modeling the compressive behavior of steel fiber reinforced concrete under high strain rate loadscitations
- 2021Modeling the Compressive Behavior of Steel Fiber Reinforced Concrete Under High Strain Rate Loadscitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Influence of transcrystalline layer on finite element mesoscale modeling of polyamide 6 based single polymer laminate compositescitations
- 2020Analytical Model to Predict Dilation Behavior of FRP Confined Circular Concrete Columns Subjected to Axial Compressive Loadingcitations
- 2019Mechanical behavior of concrete prisms reinforced with steel and GFRP bar systemscitations
- 2017A model for the simultaneous prediction of the flexural and shear deflections of statically determinate and indeterminate reinforced concrete structurescitations
- 2017Shear strengthening of damaged reinforced concrete beams with hybrid composite platescitations
- 2017Flexural and shear response predictions of statically determinate and indeterminate RC structures strengthened with fibre reinforced polymer
- 2017A model for the simultaneous prediction of the flexural and shear deflections of statically determinate and indeterminate RC structurescitations
- 2015Shear strengthening of damaged reinforced concrete beams with hybrid composite platescitations
- 2015Design formula for the flexural strengthening of RC beams using prestressed CFRP reinforcement
- 2015Analytical approach for the flexural analysis of RC beams strengthened with prestressed CFRPcitations
- 2015Transfer zone of prestressed CFRP reinforcement applied according to NSM technique for strengthening of RC structurescitations
- 2014Evaluation of the performance of full-scale RC beams prestressed with NSM-CFRP laminates
- 2014A new hybrid methodology according to near surface mounted carbon fiber reinforced polymer technique for the flexural strengthening of reinforced concrete beamscitations
Places of action
Organizations | Location | People |
---|
article
A new hybrid methodology according to near surface mounted carbon fiber reinforced polymer technique for the flexural strengthening of reinforced concrete beams
Abstract
<p>The objective of this paper is to propose a new hybrid methodology according to near surface mounted (NSM) technique, using carbon fiber reinforced polymer (CFRP) reinforcement for the flexural strengthening of reinforced concrete (RC) beams. This NSM hybrid flexural strengthening technique combines non-prestressed and prestressed CFRP laminates in the same application in order to provide a good balance in terms of load-carrying and ultimate displacement capacity to the strengthened elements. An experimental program composed of six RC beams was carried out to assess the benefits of this NSM hybrid technique when compared to the use of non-prestressed or prestressed NSM CFRP laminates (NSM prestressing technique). For this purpose, the performance of both techniques in terms of crack width, prevailing failure mode, ultimate displacement capacity, energy absorption, and load-carrying capacity of the strengthened beams was assessed. The experimental tests were also simulated by executing advanced 3D nonlinear finite element analysis. Moreover, the potentialities of other configurations for the NSM hybrid technique by adopting different non-prestressed CFRP reinforcement ratios were numerically assessed executing a parametric study, and the relevant results are presented and discussed.</p>