People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Killion, John A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Photopolymerization for filling porous ceramic matrixcitations
- 2017Halloysite nanotube reinforced polylactic acid compositecitations
- 2016Melt Extruded Bioresorbable Polymer Composites for Potential Regenerative Medicine Applicationscitations
- 2016The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocompositescitations
- 2015Thermal Degradation of Bio-nanocompositescitations
- 2014The effect of processing conditions for polylactic acid based fibre composites via twin-screw extrusioncitations
- 2014Effect of Compatibilizer Content on the Mechanical Properties of Bioplastic Composites via Hot Melt Extrusioncitations
- 2014Improvement in mechanical properties of grafted polylactic acid composite fibers via hot melt extrusioncitations
- 2014Melt Processing of Bioplastic Composites via Twin Screw Extrusion and Injection Moldingcitations
- 2013Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate compositescitations
Places of action
Organizations | Location | People |
---|
article
The effect of processing conditions for polylactic acid based fibre composites via twin-screw extrusion
Abstract
<p>Hemp, jute and lyocell fibres were incorporated into polylactic acid via twin-screw extrusion using three screw configurations, with varying lengths of mixing sections, in order to reduce the levels of shear and fibre attrition. When mixing zones were reduced, the measured fibre lengths increased and as a result the tensile properties of polylactic acid composites were improved. Similarly impact properties were observed to improve as fibre length increased. However, by increasing the fibre length in polylactic acid composites, fibre surface area within the composite was reduced and subsequently the rate of biodegradation decreased. Composites prepared using different extrusion temperature profiles were shown to have vastly different mechanical properties and in all cases composites produced using low temperature profiles exhibited superior properties to those produced at higher temperatures, indicating thermal degradation at the more elevated temperatures. For example, 50 wt% jute composites exhibited increases of 20.9% and 199% in tensile strength and flexural modulus, the greatest improvement of all composite types at that loading.</p>