Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Landis, Eric

  • Google
  • 2
  • 11
  • 127

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Cellulose Nanocomposites for Performance Enhancement of Ordinary Portland Cement-Based Materials14citations
  • 2014Mechanical resilience and cementitious processes in Imperial Roman architectural mortar113citations

Places of action

Chart of shared publication
Kamasamudram, Kavya S.
1 / 1 shared
Ashraf, Warda
1 / 1 shared
Kunz, Martin
1 / 8 shared
Wenk, Hans-Rudolf
1 / 1 shared
Ingraffea, Anthony R.
1 / 1 shared
Monteiro, Paulo J. M.
1 / 12 shared
Vitti, Massimo
1 / 1 shared
Chen, Heng
1 / 1 shared
Jackson, Marie
1 / 1 shared
Li, Qinfei
1 / 1 shared
Brune, Philip F.
1 / 1 shared
Chart of publication period
2021
2014

Co-Authors (by relevance)

  • Kamasamudram, Kavya S.
  • Ashraf, Warda
  • Kunz, Martin
  • Wenk, Hans-Rudolf
  • Ingraffea, Anthony R.
  • Monteiro, Paulo J. M.
  • Vitti, Massimo
  • Chen, Heng
  • Jackson, Marie
  • Li, Qinfei
  • Brune, Philip F.
OrganizationsLocationPeople

article

Cellulose Nanocomposites for Performance Enhancement of Ordinary Portland Cement-Based Materials

  • Kamasamudram, Kavya S.
  • Ashraf, Warda
  • Landis, Eric
Abstract

<jats:p> Cellulose nanofibril (CNF) with a high aspect ratio, elastic modulus, tensile strength, and reactive surface area is a promising nanomaterial for improving the chemo-mechanical properties of cementitious matrixes. CNFs are typically less than 0.2 mm in length and 50 nm in width, and are extracted from plants and trees. This study investigated the potential application of three types of CNF for enhancing the performance of ordinary Portland cement (OPC) pastes: pure CNF (PCNF), silica coated CNF (SCNF), and lignin-containing CNF (LCNF). The performance of the cement pastes was monitored for cement paste workability, hydration kinetics, microstructural development, and mechanical performance (compressive strength and flexural strength). The dispersion stability of CNFs measured through zeta potential showed a better dispersion for SCNF when compared with PCNF and LCNF in varied alkaline mediums. The better stability of SCNF also resulted in improved workability of the cement paste mixtures containing this type of cellulose. All of the cellulose nanomaterials accelerated the cement hydration at the early stage as a result of the nucleation effect. Such an acceleration effect was slightly higher for SCNF because of the presence of silica nanoparticles. The addition of 0.1% SCNF increased the compressive strength (90 days) by 13% when compared with the control batch and 10% compared with the PCNF batch. The addition of 0.1% of PCNF enhanced the flexural strength by 70% followed by LCNF with 40% improvement. SCNF showed little to no effect on the flexural strength. </jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • surface
  • reactive
  • laser emission spectroscopy
  • strength
  • cement
  • flexural strength
  • lignin
  • tensile strength
  • cellulose